Class	Sem	Core]	Elective Course		Ability Enhance	ement Compulsory	Total
		Course	Discipline Specific Elective	Dissertation Project	Generic Elective Course	Course Ability Enhancement Compulsory Courses	s (AECC) Skill Enhancement Courses	Credit
M.Sc. I	I	5 papers 5 x 4= 20 Credits	-	-	HR – I 2 Credit CS – I 2 Credit	Communication Skill 2 Credit	1 Practical = 4 Credits	30
	Π	4 papers 4 x 4= 16 Credits	Paper (A) 4 Credit <u>OR</u> Paper (B) 4 Credits	1 Project = 4 Credits	CS – II 2 Credit	-	1 Practical = 4 Credits	30
M.Sc. II	III	4 papers 4 x 4= 16 Credits	Paper (A) 4 Credit <u>OR</u> Paper (B) 4 Credits	1 Project = 4 Credits	-	-	1 Practical = 4 Credits Subject Related Skill Dev. Course 2 Credit	30
	IV			1 Industrial Training / Institutional Project (IT) = 16 Credits	-	-	Subject Related Skill Dev. Course 2 Credit	18
Total	Credits	52	8	24	6	2	16	108

M.Sc.(Computer Science) PROGRAMME CREDIT DISTRIBUTION PATTERN (108)

Mandatory 12 additional/ add-on credits for Post Graduate Programmes

Note:

1. 6 credits from Group - 1 are compulsory

2.	Choose	minimum	6	credits	from	Group	- 2	2 to	Group .	- 7
----	--------	---------	---	---------	------	-------	-----	------	---------	-----

Group-1	Human Rights Awareness Course (Semester-I):	02 credit					
	Cyber Security Awareness Course (Semester-I)	02 credit					
	Cyber Security Awareness Course (Semester-II)	02 credit					
Group-2	1. Subject Related Certificate Course (Sem. II)						
Skill Component	2. Subject Related skill development course (Sem. III)	02 credits					
Courses	3. Subject Related skill development course (Sem. IV)	02 credits					
Group-3	(a) Representation in Sports at University Level	02 credits					
	(b) Representation in Sports at State Level / National level	02 credits					
	(c) Representation in Sports at International (overseas) Level	02 credits					
Group-4	(a) Selection in AVISHKAR at University Level	02 credits					
Group-5	(a) Research paper publication at National level	02 credits					
	(b) Research paper publication at International (overseas) level	02 credits					
Group-6	(a) Participation in Summer School/ Internship programme / Short	02 credits					
	term course (not less than 2 weeks duration)						
Group-7	(a) Participation in cultural and co-curricular activities/ extracurricular	02 credit					
	activities/competitions at University level / State Level						
	(b) Participation in cultural and co-curricular activities /	02 credits					
	extracurricular activities/ competitions at International (overseas)						
	level						

Note : 1) One Credit = 15 Lectures.

- 2) The separate Project should be initiated and submitted on the II Semester and III Semester.
- 3) All semester --> 4 Lectures per week / paper.
- The last semester contains full Internship i.e. Industrial Training (IT) Project and reporting Weekly to the institute/department.
- 4) Theory paper be covered with 70% actual teaching (3 actual lectures per week) and 30% component (1 lecture per week) of self-study should be further evaluated through Group discussion / Seminar / Open Book Test / MCQ / Essay writing / Assignment etc.

M.Sc. (Computer Science)-I (Sem. I)

2019 Pattern		2022Pattern		
Subject	Paper Code	Paper Code	Paper Title	
Principles of Programming Languages	COMP4101	PSCS111	Principles of Programming Language (C)	
Cryptography& NetworkSecurity	COMP4102	PSCS112	Cryptography and Cyber Forensics(C)	
Database Technologies	COMP4103	PSCS113	Database Technologies (C)	
Design and Analysisof Algorithms	COMP4104	PSCS114	Design and Analysis of Algorithms (C)	
Programming with DOT NET	COMP4105	PSCS115	Dot Net Framework & C# (C)	
Lab Course on DOT NET, PPL and Database Technologies	COMP4106	PSCS116	Lab Course on Dot Net, PPL,DBT &DAA (C)	
Human Rights – I	HR-101	HR1	Human Rights – I	
Introduction to Cyber Security – I	CYS-101	CYS1	Introduction to Cyber Security – I	

Anekant Education Society's

Tuljaram Chaturchand College of Arts, Science and Commerce, Baramati Autonomous

M.Sc. (Computer Science) AcademicYear2022-2023

M.Sc. (Computer Science) I-Credit Structure

Subject	Semester	Semester	Total
	I	II	
Paper–I	4	4	8
Paper–II	4	4	8
Paper–III	4	4	8
Paper–IV	4	4	8
Paper–V	4	4	8
Practical	4	4	8
Practical(Project)		4	4
Intro. To Cyber Security–I&II	2	2	4
Human Rights	2		2
Certificate Course- I	2		2
Total =	30	30	60

M.Sc.(Computer Science)II-Credit Structure

Subject	Semester	Semester IV	Total
	III		
Paper–I	4		4
Paper–II	4	Industrial	4
Paper–III	4	Training	4
Paper–IV	4	Project	8
Paper–V	4	Internship	8
Practical/ Paper VI (Sem IV)	4	(IT) 16	8
Practical(Project)	4	10	8
Skill Development I & II	2	2	4
			2
Total =	30	18	48

Extra Credits:

1	Human Rights	2 Credits
2	Cyber Security Module I & II	4 Credits
3	Certificate Courses I (communication skill)	2 Credits
4	Skill Development I & II	4 Credits
	Total Extra Credits=	12 Credits

Total Credits: Academic Credits (24+28+28+16=96) + Extra Credits(12) =108

No	Class	Sem	Code	Paper	Paper Title	Credit	Exam	Marks
1			PSCS111	Theory	Principles of Programming Language (C)	4	I/E	60 + 40
2			PSCS112	Theory	Cryptography and Cyber Forensics(C)	4	I/E	60 + 40
3			PSCS113	Theory	Database Technologies (C)	4	I/E	60 + 40
4	M.ScI	т	PSCS114	Theory	Design and Analysis of Algorithms (C)	4	I/E	60 + 40
5		1	PSCS115	Theory	Dot Net Framework & C# (C)	4	I/E	60 + 40
6			PSCS116	Pract.	Lab Course on Dot Net, PPL,DBT& DAA (C)	4	I/E	60 + 40
7			HR1		Human Rights – I	2		
8			CYS1		Introduction to Cyber Security – I	2		
Note	: Credit: 24	. Core	subjects are	compulso	ory and Extra credits (2+2=4) is also compulsory.			

Paper wise Course Structure For M.Sc. (Computer Science)-I Semester –I

SYLLABUS (CBCS) FOR M.Sc. (Computer Science)-I Sem-I

(With effect from June 2022) Academic Year 2022-2023

Class: M. Sc. (Computer Science) (Semester-I) Title of paper: Principles of Programming Language Credit - 4 Paper Code: **PSCS111** Paper: **I** No. of Lectures - 60

Prerequisites:

It is assumed that student learning this course have the following background:

- Experience with an OOP language (such as Java or C++)
- Experience with a procedural language (such as C)
- Working knowledge of C, C++, and Java programming.
- Basic algorithms and data structure concepts.

Objectives:

- This course will prepare you to think about programming languages analytically:
 - Separate syntax from semantics
 - Compare programming language designs
 - Learn new languages more quickly
 - Use standard vocabulary when discussing languages
 - Understand basic language implementation techniques

• This course focuses on both:

- Theory is covered by the textbook readings, lectures and on the tests
- Implementation is covered by the homework assignments

Unit	Title and Contents	No. of
		lectures
	Programming Domains	8
Unit-I	 ✓ The Art of Language Design - The Programming Language Spectrum, Why Study Programming Languages? ✓ Types of Programming Language Domains 	
	# Scientific Applications – Large Number of Floating Point Computations – FORTRAN	
	# Business Applications – Produce Reports, Use decimal numbers and characters – COBOL	
	# Artificial Intelligence – Symbols rather than numbers manipulated – LISP	
	# Systems Programming – Need Efficiency because of continuous use – C	
	# Web Software – Eclectic Collection of Languages: Markup (e.g., XHTML), Scripting (e.g., PHP), General-Purpose (e.g., Java)	
	# Data Analytics Applications – R Programming, Python Programming	

Unit-II	Names, Scopes and Bindings	8
	✓ Meaning of Names in Scope-Aliases, Object Lifetime and Storage	
	Management: Static Allocation, Stack-based Allocation, Heap-Based	
	Allocation, Garbage Collection	
	✓ The Binding of Referencing Environments - Subroutine Closures, Object	
	Closures, Nested Subroutines, Declaration Order	
	✓ Scope Rules, Static Scoping, Dynamic Scoping	
	✓ Overloading, Polymorphism and related concepts, Macro Expansion	
Unit-III	Data Types	8
	Primitive Data Types - Numeric Types, Integer, Floating point.	Ū
	Complex, Decimal, Boolean Types, Character Types, Character	
	String Types-Design Issues, Strings and Their Operations, String	
	Length Operations, Implementation of Character String Types.	
	✓ User defined Ordinal types - Enumeration types, Designs.	
	Evaluation Subrange types Evaluation Implementation of	
	User defined ordinal types	
	✓ Array types - Array initialization, Array operations, Rectangular and	
	Jagged arrays, Slices, Evaluation, Implementation of Array Types	
	✓ Associative Arrays – Structure and operations. Implementing	
	Associative arrays	
	✓ Record Type – Definitions of records, References to record fields,	
	Operations on records, Evaluation, Implementation of Record types	
	✓ Union Type – Design issues, Discriminated versus Free unions,	
	Evaluation. Implementation of Union types	
	✓ Pointer and Reference Types - Design issues, Pointer operations,	
	Pointer problems – Dangling pointers, Lost heap dynamic variables,	
	Pointers in C and C++, Reference types, Evaluation, Implementation of	
	pointer and reference types, Representation of pointers and references,	
	Solution to dangling pointer problem, Heap management	
Unit-IV	Control Flow	8
	 Expression Evaluation-Precedence and Associativity, Assignments, 	
	Initialization, Ordering Within Expressions, Short-Circuit Evaluation	
	Structured and Unstructured Flow – Structured Alternatives to GOTO	
	Sequencing	
	Selection – Short Circuited Conditions, Case/Switch Statements	
	✓ Iteration – Enumeration Controlled Loops, Combination, Loops,	
	Iterators, Logically Controlled Loops	
	Recursion-Iteration and Recursion, Applicative and Normal	
	Order Evaluation	
	Subroutines and Control Abstraction	
Unit V	Subprograms – Fundamentals of Subprograms Design Issues for	0
Unit- v	subprograms Overloaded Subprograms Nested Subprograms	0
	✓ Generic Subroutines – Generic Functions in C++. Generic Methods in	
	Java	
	✓ Design Issues for Functions, User Defined Overloaded Operators	
	Coroutines	
	✓ Parameter Passing Methods, Local Referencing Environments, The	
	General Semantics of Calls and Returns	

Unit-VI	Data Abstraction and Object Orientation	8
	✓ Encapsulation and Inheritance - Modules, Classes, Nesting, Type,	
	Extensions, Extending without Inheritance	
	✓ InitializationandFinalization-ChoosingaConstructor,Referencesand	
	Values, Execution Order	
	✓ Dynamic Method Binding-Virtual and Non-Virtual Methods,	
	Abstract Classes and Interfaces, Member Lookup, Polymorphism,	
	Object Closures	
	✓ Multiple Inheritance-Semantic Ambiguities, Shared	
	Inheritance, Replicated Inheritance, Mix-In Inheritance	
Referen	ces:	
1. Scott, I	Programming Language Pragmatics, 3e(With CD) ISBN 9788131222560 Kaufmann	Publishers, An
Imprint of	f Elsevier, USA	
2. Robert	W. Sebesta, Concepts of Programming Languages, Eighth Edition, Pearson Education	on
3. Carl To	ownsend, Introduction to Turbo Prolog	
4. Patrick	Henry Winston & Berthold Klaus Paul Horn ,LISP 3rd edition -BPB	
5. M. Gab	brielli, S. Martini, , Programming Languages: Principles and Paradigms, Springer IS	BN:
97818488	29138	

NOTE: 48 LECTURE FOR CURRICULUM (TEACHING) &12 LECTURES FOR LEARNING

Class: M.Sc. (Computer Science) (Semester-I) Title of paper: Cryptography and Cyber Forensics Credit -4 Paper Code: PSCS112 Paper: II No. of Lectures: 60

Learning Objectives:

- To enable students to get sound understanding of Info-Sys-Security, Network Security, Cryptography and cyber forensics.
- To equip with knowledge and skills necessary to support for their career in Network Security.
- To encourage them to do further academic studies / research in this area.
- To develop IT professionals skilled in information/network security and forensic analysis of compromised systems and who are efficient in documentation pertaining to cyber forensic analysis to be provided to the courts of law.

Learning Outcomes:

- Learn the security concepts and techniques.
- In future these experts will be an asset to this country for serving in the fields of information security and digital forensics

Units	Title & Contents	No. of
		Lectures
Unit – I	Introduction to Security, Cryptography and techniques:	
	The Need for Security, Security Approaches, Principles of Security,	09
	Types of Attacks.	
	Introduction to Cryptography, Plain Text and Cipher Text, Substitution	
	Techniques, Transposition Techniques, Encryption and Decryption,	
	Symmetric and Asymmetric key cryptography, Steganography.	
Unit – II	Symmetric Key Algorithms and AES:	
	Algorithm Types and Modes, Overview of Symmetric KeyCryptography,	00
	DES, IDEA, Blowfish	09
Unit – III	Asymmetric Key Algorithms, Digital Signature and RSA: Brief	
	History of Asymmetric Key Cryptography, overview, RSA Algorithm,	06
	Comparison between Symmetric & Asymmetric Key Algorithms, Digital	
	Signature	
Unit – IV	Digital Certificates and Public Key Infrastructure (PKI):	0.4
	Introduction, Digital Certificates, private key management.	04
Unit – V	Introduction to Cyber forensics: Information Security Investigations,	
	Corporate Cyber Forensics, Scientific method in forensic analysis,	
	investigating large scale Data breach cases. Analyzing malicious software.	10
	Types of Computer Forensics Technology, Types of Military Computer	12
	Forensic Technology, Types of Law Enforcement: Computer Forensic	
	Technology, Types of Business Computer Forensic Technology, Specialized	
	Forensics Techniques, Hidden Data and How to Find It, Spyware and Adware,	
	Encryption Methods and Vulnerabilities, Protecting Data from Being	
	Compromised internet Tracing Methods, Security and Wireless Technologies,	
	Avoiding Fittans with Firewans Biometric Security Systems.	

Unit – VI	Types of Computer Forensics Systems: Internet Security Systems, Intrusion Detection Systems, Storage Area Network Security Systems, Network Disaster Recovery Systems, Satellite Encryption Security Systems, Instant Messaging (IM) Security Systems, Net Privacy Systems,Identity Management Security Systems, Identity Theft, ,Router Forensics.Cyber forensics tools and case studies. Ethical Hacking: Essential Terminology, Windows Hacking, Malware, Scanning, Cracking.	10
Refere	ence:	
1.	Atul Kahate, "Cryptography and Network Security", Second/ Thirtd/ Forth Edit	tion,
	McGraw Hill Publication.	
2.	2. John R. Vacca," Computer Forensics: Computer Crime Scene Investigation", 2nd	
	Edition, Charles River Media, 2005	
3.	. Ravi Kumar & B Jain, "Cyber Forensics - Concepts and Approaches", icfai university press, 2006	
4.	ChristofPaar, Jan Pelzl," Understanding Cryptography: A Textbook for Student	s and
	Practitioners", Second Edition, Springer's, 2010	
5.	"Live Hacking: The Ultimate Guide to Hacking Techniques & Countermeasure	s for
	Ethical Hackers & IT Security Experts", Ali Jahangiri, First edition, 2009	
6.	6. Kizza, Springer, "Computer Network Security"	
	Harrington, Elsevier, "Network Security"	

NOTE: 50 LECTURE FOR CURRICULUM (TEACHING) & 10 LECTURES FOR LEARNING

Class : M.Sc.(Computer Science)(Semester-I)

Title of paper: Database Technologies

Credit : 4

Paper Code: PSCS113PaperIIINo. of Lectures: 60

Prerequisites: Knowledge of RDBMS

Course objectives:

- 1. To study the usage and applications of Parallel and Distributed databases, Object relational database and emerging systems.
- 2. To acquire knowledge on NoSQL databases.

Course outcomes:

- 1. Compare different database technologies.
- 2. Compare and contrast NoSQL databases with RDBMS.

Units	Title & Contents	
		Lectures
Unit–I	Parallel and Distributed Databases	
	Database System Architectures: Centralized and Client-Server Architectures,	
	Server System Architectures, Parallel Systems, Distributed Systems	
	Parallel Databases : I/O Parallelism, Inter and Intra Query Parallelism,	0.0
	Inter and Intra operation Parallelism	08
	Distributed Database Concepts:	
	Distributed Data Storage, Distributed Transactions, Commit	
	Protocols, Concurrency Control, Distributed Query Processing, Three Tier	
	Client Server Architecture	
Unit–	Object and Object Relational Databases	
II	Concepts for Object Databases:	
	Object Identity, Object Structure, Type Constructors, Encapsulation of	
	Operators, Methods, Persistence, Type and Class Hierarchies, Inheritance,	10
	Complex Objects, Object Database Standards	12
	Languages and Design: ODMG Model, ODL, OQL	
	Object Relational and Extended Relational Systems: Object Relational features	
	in SQL/Oracle, Case Studies	
Unit–III	Mobile Databases	
	Location and Handoff Management, Effect on Mobility on Data Management	08

	Location Dependent Data Distribution, Mobile Transaction Models Concurrency Control, Transaction Commit Protocols Mobile Database Recovery Schemes Examples: Oracle Database Lite, Microsoft SQL Server Compact	
Unit–I	V Introduction to NoSQL	
	Concepts and evolution, History of NoSQL, Different No SQL products:	08
	MongoDB, CouchDB, CassandraExploring MongoDB , Advantages of MongoDB over RDBMS Interfacing and Interacting with NoSQL Sharding Replication	
Unit_V Working with NoSOL		
	NoSQL Storage Architecture, CRUD operations with MongoDB	
	Querying, Modifying and Managing NoSQL datastoresIndexing and ordering	08
	datasets, Surveying database internals Migrating from RDBMS to NoSQL	
	Implementing NoSQL with PHP	
Unit –	MongoDB Aggregation and data management	
VI	Introduction to aggregation, Types of Aggregation Performance Tuning	06
	data from TTL hands on examples	
Refere		
1	Henry Korth Abraham Silberschatz and S Sudarshan, "Database System Concepts".	Sixth
	Edition. McGraw Hill.2011.	
2.	2. M.Tamer Ozsu and Patrick Valduriez. "Principles of Distributed Database Systems". Third	
	Edition, Springer, 2011.	,
3.	. Thomas Connolly and Carolyn Begg, "Database Systems, A Practical Approach to Design,	
	Implementation and Management", Fourth Edition, Pearson Education, 2008, Fifth Ed	ition,
	Pearson Education, 2010, Sixth Edition, Pearson Education, 2015.	
4.	. R.Elmasri, S.B.Navathe, "Fundamentals of Database Systems", Seventh Edition, Pearson	
	Education, 2017.	
5.	C.J.Date, A. Kannan, S. Swamynathan, "An Introduction to Database Systems", Eight	th
	Edition, Pearson Education,2006.	
6.	Dan Sullivan, "NoSQL for Mere Mortals", First Edition, Pearson Education, 2015.	
7.	Kristina Chodorow, "MongoDB-The Definitive Guide", Second Edition, O'Reilly, 2013.	
8.	https://www.mongodb.com/docs/manual/	

NOTE: 50 LECTURE FOR CURRICULUM (TEACHING) &10LECTURE FOR LEARNING

Class: M.Sc. (Computer science) (Semester-I) Title of Paper: Design & Analysis of Algorithm Credit: 4 Paper Code: PSCS114 Paper: IV No. of .lectures:60

Learning Objectives: Student successfully completing this course will be able to

- Understand Basic Algorithm Analysis techniques and the use o-asymptotic notation
- Understand different design strategies
- Understand the use of data structure proving algorithm performance
- Understand classical problem and solutions
- Learn a variety of useful algorithms
- Understand classification of problems

Learning Outcome

- Basic algorithms and data structure concepts.
- Basic programming concepts

		No. of	
Units	Title and Contents		
Unit–I	Analysis & Design Strategies Algorithm definition, space complexity, time complexity, worst case–best case –average case complexity, asymptotic notation, sorting algorithms(insertion sort, heap sort) sorting in linear time, searching algorithms, recursive algorithms (Tower of Hanoi, Permutations). Divide and Conquer-control abstraction, binary search, merge sort, Quick sort, Strassen's matrix Multiplication	10	
Unit–II	Greedy MethodKnapsack problem ,job sequencing with deadlines ,minimum-costs SpanningItrees, Kruskal's and Prim's algorithm, optimal storage on tapes, optimal10merge patterns, Huffman coding		
Unit–III	 Dynamic programming Matrix chain multiplication, single source shortest paths, Dijkstra's algorithm, Bellman-ford algorithm, all pairs shortest path, longest common subsequence, string editing ,0/1 knapsack problem, Traveling salesperson problem. 		
Unit_IV	Decrease and conquer DES and BES. Topological sorting. Strongly connected components	6	
Unit-V	Backtracking & Branch and Bound Technique 6 General method, 8 queen's problem, sum of subset problem, graph coloring 8 problem, Hamiltonian cycle. FIFO, LIFO, LCBB, TSP problem,0/1knapsack 8		
Unit–VI	Transform and Conquer & Problem Classification Horner's Rule and Binary Exponentiation–Problem Reduction Nondeterministic algorithm, The class of P, NP, NP-hard and NP-Complete problems, significance of Cook's theorem.	6	

NOTE: 50 LECTURE FOR CURRICULUM (TEACHING) &10 LECTURES FOR LEARNING

References:

- 1. EllisHorowitz, Sartaj Sahni & Sanguthevar Rajasekaran, Computer Algorithms, Galgotia.
- 2. T.Cormen, C.Leiserson, & R.Rivest, Algorithms, MITPress, 19901
- 3. A.Aho, J. Hopcroft, & J.Ullman, The Design and Analysis of Computer Algorithms, AddisonWesley, 1974
- 4. Donald Knuth ,The Art of Computer Programming (3vols., various editions, 1973-81), Addison Wesley
- 5. StevenSkiena, TheAlgorithmManual, SpringerISBN:9788184898651
- 6. Jungnickel, Graphs, Networks and Algorithms, Springer, ISBN: 3540219056

Class: M.Sc. (Computer science) I (Semester-I)

Title of Paper: Dot Net Framework & C#

Credit: 4

Prerequisites-

- Knowledge of object-oriented programming concepts such as data abstraction, encapsulation, inheritance and polymorphism.
- Familiarity with programming language such as C++and/or Java.

Learning Objectives:

Able to understand the DOTNET framework, C# language features and Windows application development using C#.Net.

Learning Outcome:

Ability to write the Visualized programming and design different real life problems.

	PartI : C#		
1.	Introduction to DOTNET Framework & C#	10	
	a. Introduction to DOTNET		
	b. DOTNET class framework		
	c. Common Language Runtime		
	i. Overview		
	ii. Elements of .NET application		
	iii. Memory Management		
	iv. Garbage Collector		
	d. User and Program Interface		
	e. Language features		
	i. Variables and Expressions, type conversion		
	ii. Flow Control		
	iii. Functions, Delegates		
	iv. Debugging and error handling, exception		
	handling(System Defined and User Defined)		
	f. Object Oriented Concepts		
	i. Defining classes, class members, Interfaces, properties		
	ii. Access modifiers, Implementation of class,		
	interface and properties		
	iii. Concept of hiding base class methods, Overriding		
	iv. Event Handling		
	g. Collections, Comparisons and Conversions		
	i. Defining and using collections, Indexers, iterators		
	ii. Type comparison, Value Comparison		
	h. Generics		
	i. Using generics,		
	ii. Defining Generics,		
	iii. Generic Interfaces		
	iv. Generic methods		
	v. Generic Delegate		
2.	Window Programming	10	
	a. Window Controls		
	i. Common Controls		

Paper Code:PSCS115 Paper: V No. of lectures:60

	ii Container Controls	
	iii Menus and Toolbars	
	iv Drinting	
	v. Dialoga	
	v. Dialogs	
	vi. Data tools	
	b. Deploying Window Application	
	i. Deployment Overview	
	ii. Building the project: Installation	
	c. Data Handling	
	i. File System Data	
	ii. XML Data, JSON	
	iii. DatabasesandADO.NET	
	d. Reporting Tools	
	i Data Report	
	ii Crystal Report	
-		
3.	Dot NET Assemblies	2
	a. Components	
	bNET Assembly features	
	c. Structure of Assemblies	
	d. Calling assemblies, private and shared assemblies	
4.	LINO	6
	a. Operators	
	b. SOL	
	c Objects	
	d Dataset	
	e. AIVIL f. Entition	
	1. Enuites	
_	g. Lambda Expressions	10
5.	Entity Framework	10
	a. Overview	
	b. Architecture	
	c. Environment setup	
	a. Database Setup	
	b. Entity Data Model	
	c. DB Context	
	d. Entity Types	
	e. Entity Relationships	
	f. Entity Lifecycle	
	Entity Approaches	
6.	Database Operations	10
	a. CRUD	
	b. Concurrency	
	c. Transactions	
	d. Views	
	e. Index	
	f. Stored Procedures	
	g. Disconnected Entities	
	h. Table Valued Functions	
	i. Native SOL	
	i Projection Quires	
	J. T. Jeenon Kones	

NOTE: 48 LECTURE FOR CURRICULUM (TEACHING) &12 LECTURES FOR LEARNING

Recommended Text and Reference books:

- 1. Beginning Visual C#, Wrox Publication
- 2. Professional Visual C#, Wrox Publication
- 3. InsideC#,byTomArcherISBN:0735612889MicrosoftPressÂ@2001,403pages
- 4. BeginningASP.NET3.5,WroxPublication
- 5. ProgrammingASP.NET3.5byJesseLiberty,DanMaharry,DanHurwitz,O'Reilly
- 6. IllustratedC#2008,Solis,PublicationAPRESS,ISBN978-81-8128-958-2
- 7. ProfessionalC#4.0and.NET4byChristianNagel,BillEvjen,JayGlynn,KarliWatson,
- 8. Morgan Skinner, WROX
- 9. Beginning C# Object-Oriented Programming By Dan Clark, Apress
- 10. ADO.NETExamplesandBestPracticesforC#Programmers,ByPeterD.BlackburnApress
- 11. Database Programming with C#,By Carsten Thomsen, Apress
- 12. https://www.tutorialspoint.com

Class: M.Sc.(Computer science)-I (Semester-I) Title of Paper: Lab Course On DOT NET,PPL,DBT,DAA

Paper Code:PSCS116 Paper: VI (Lab Course) No. of Practical's: 12

 $Credit: \ 4 (3 Hr. Practical/week/batch)$

Console Application		
Assignment1	Parameter Modifiers(ref, out ,params)	
Assignment2	Delegate and Events	
Assignment3	Properties and Indexers	
Assignment4	Inheritance and Interface	
Assignment5	Polymorphism(Method Overloading, Operator Overloading and Method Overriding	
Assignment6	Exception Handling	
Assignment7	Collections	
Assignment8	Generics	
	Windows Application	
Assignment1	Use of Basics Form Controls	
Assignment2	Use of List Box	
Assignment3	Event Handling(Calculator)	
Assignment4	Use of Dialogue Boxes	
Assignment5	Simple Database Operations	
Assignment6	Advanced Database Operations	
Assignment7	Simple Crystal Report	
Assignment8	Advanced Crystal Report	
	ASP.Net Web Applications	
Assignment1	Database Operations 1	
Assignment2	Database Operations 2	
Assignment3	Database Operations 3	
Assignment4	Database Operations 4	
	PPL Assignments	
Assignment1	LISP	
Assignment2	PROLOG	
	Database Technologies Assignments	
Assignment1	Creating database, collections, insert, update & delete documents in NoSQL	
Assignment2	Querying documents in NoSQL	
Design and Analysis Of Algorithm		
Assignment1	Implementation and Time analysis of sorting algorithms Insertion sort, Merge sort and Quicksort	
Assignment 2	Implementation of Graph and Searching (DFS and BFS).	
Assignment 3	Implement prim's algorithm	
Assignment 4	Implement kruskal 's algorithm.	