

Anekant Education Society's **Tuljaram Chaturchand College** of Arts, Science & Commerce, Baramati *(Autonomous)*

Two Year M.Sc. Degree Program in Zoology

(Faculty of Science & Technology)

CBCS Syllabus

M.Sc. (Zoology) Semester -I

For P.G. Department of Zoology

Tuljaram Chaturchand College of Arts, Science & Commerce, Baramati

Choice Based Credit System Syllabus (2023 Pattern)

(As Per NEP 2020)

To be implemented from Academic Year 2023-2024

(Eligibility : B. Sc. Zoology/Botany/Microbiology/Agri./ Agri. Biotech./Environment Science)

Title of the Programme: M. Sc. (Zoology)

Preamble

AES's Tuljaram Chaturchand College has made the decision to change the syllabus of across various faculties from June, 2023 by incorporating the guidelines and provisions outlined in the National Education Policy (NEP), 2020. The NEP envisions making education more holistic and effective and to lay emphasis on the integration of general (academic) education, vocational education and experiential Course. The NEP introduces holistic and multidisciplinary education that would help to develop intellectual, scientific, social, physical, emotional, ethical and moralcapacities of the students. The NEP 2020 envisages flexible curricular structures and Course based outcome approach for the development of the students.By establishing a nationally accepted and internationally comparable credit structure and courses framework, the NEP 2020 aims to promote educational excellence, facilitate seamless academic mobility, and enhance the global competitiveness of Indian students. It fosters a system where educational achievements can be recognized and valued not only within the country but also in the international arena, expanding opportunities and opening doors for students to pursue their aspirations on a global scale.

In response to the rapid advancements in science and technology and the evolving approaches in various domains of Zoology and related subjects, the Board of Studies in Zoology at Tuljaram Chaturchand College, Baramati - Pune, has developed the curriculum for the first semester of **M. Sc. Zoology**, which goes beyond traditional academic boundaries. The syllabus is aligned with the NEP 2020 guidelines to ensure that students receive an education that prepares them for the challenges and opportunities of the 21st century. This syllabus has been designed under the framework of the Choice Based Credit System (CBCS), taking into consideration the guidelines set forth by the National Education Policy (NEP) 2020, LOCF (UGC), NCrF, NHEQF, Prof. R.D. Kulkarni's Report, Government of Maharashtra's General Resolution dated 20th April and 16th May 2023, and the Circular issued by SPPU, Pune on 31st May 2023.

After completion of M.Sc. in Zoology, enrolled students will acquire complete disciplinary knowledge as well as allied branches of Zoology. At the end of programme, students may possess expertise which will provide them competitive advantage in pursuing higher studies within India or abroad; and seek jobs in academia, civil administration, research or industries. Students will be able to define and explain major concepts in the biological sciences. They will be able to correctly use biological instrumentation and proper laboratory techniques; to communicate biological knowledge in oral and written form; to

identify the relationship between structure and function at all levels: molecular, cellular, tissue, organ, system and organismal.

Students should be able to identify, classify and differentiate diverse non-chordates and chordates based on their basic morphological, anatomical biochemical and molecular characters. They will also be able to describe economic, ecological and medical significance of various animals in human life. This programme will create a curiosity and awareness among students to explore the animal diversity and take up wild life photography or wild life exploration as a career option. The procedural knowledge about identification and classification of animals will provide students professional advantages in seeking the jobs in fields of teaching, research and taxonomy in various private & public organizations; including Zoological Survey of India and National Parks/Sanctuaries. Students will be able to apply the scientific methods to answer questions in biology by formulating testable hypotheses, gathering data that address these hypotheses, and analysing those data to assess the degree to which their scientific work supports their hypotheses. Students will be able to present scientific hypotheses and data both orally and in writing in the conventional formats that are in practice. Students will be able to access the primary literature, identify relevant works for a particular topic, and evaluate the scientific content of these works. Acquired practical skills in biotechnology, biostatistics, bioinformatics and molecular biology can be used to pursue career as a scientist in drug development industry in India or abroad. The students will be acquiring basic experimental skills in various techniques in the fields of genetics; molecular biology; biotechnology; entomology, physiology, qualitative and quantitative microscopy; and analytical biochemistry. These methodologies will provide an extra edge to our students, who wish to undertake higher studies. Students will be able to use the evidence of comparative biology to explain how the theory of evolution offers the only scientific explanation for the unity and diversity of life on earth. They will be able to use specific examples to explicate how descent with modification has shaped animal morphology, physiology, life history, and behaviour. Students will be able to explain how organisms function at the level of the gene, genome, cell, tissue, organ and organ-system. Drawing upon this knowledge, they will be able to give specific examples of the physiological adaptations, development, reproduction and behaviour of different animals. Students will be able to analyse the ecological relationships of life on earth by tracing energy and nutrient flows through the ecosystems. They will be able to establish the relationship between the physical features of the environment and the structure of populations, communities, and ecosystems. Students undertaking skill enhancement courses like aquaculture, sericulture and apiculture

will inculcate skills involved in rearing fish, bees and silk moth which would help them to generate self-employment making them successful entrepreneurs. Acquired skills in diagnostic testing, haematology, histopathology, staining procedures etc. used in clinical and research laboratories will make them eligible to work in diagnostic or research laboratories. M.Sc. Zoology candidates will find opportunities in public services departments, NGOs, environmental agencies, universities, colleges, biotechnological, pharmaceutical, environmental / ecological fields. There are numerous career opportunities for candidates completing their M.Sc. Zoology in public and private sector. Candidates may find jobs as Animal Behaviourist, Conservationist, Wildlife Biologist, Zoo Curator, Wildlife Educator, Zoology teacher, Forensic experts, Lab technicians, Veterinarians, etc.

Overall, revising the Zoology syllabus in accordance with the NEP 2020 ensures that students receive an education that is relevant, comprehensive, and prepares them to navigate the dynamic and interconnected world of today. It equips them with the knowledge, skills, and competencies needed to contribute meaningfully to society and pursue their academic and professional goals in a rapidly changing global landscape.

Programme Specific Outcomes (PSOs)

- PSO1. Disciplinary Knowledge: Understand the basic concepts of various branches of Zoology like Entomology, Physiology,Genetics,Cell Biology, Taxonomy, Biochemistry& Bioenergetics, Molecular Biology, Embryology, Developmental Biology, Immunology, Ecology, Ichthyology, Fresh Water Zoology, and Applied Zoology.
- **PSO2.** Critical thinking and problem solving: Analyse the relationships of animals with abiotic factors and different biotic factors like plants and microbes. They will able to identify the species based on molecular taxonomy.
- **PSO3.** Individual and Teamwork: Sets up the experiments and performs the same as per laboratory standards in different fields of Zoology like Taxonomy, Physiology, Ecology, Cell biology, Genetics, Applied Zoology, Clinical science, tools and techniques of Zoology, Toxicology, Entomology, Nematology, Sericulture, Biochemistry, Ichthyology, Animal biotechnology, Immunology, Physiology and research methodology.
- **PSO4.** Research related skills and scientific temper: Propose hypothesis, formulate tests, use various modern instruments for biological analysis, data collection and field surveys and interprets the data and find answers.
- **PSO5.** Critical Thinking: Recognizes the relationships between structure and functions at different levels of biological organization (e.g., molecules, cells, organs, organisms, populations, and species) for animals.
- **PSO6.** Development of Observation Skills: Distinguishes different ecosystems (e.g., terrestrial, freshwater, marine) based on biological, chemical, and physical features; Correlates the morphology, physiology, behaviour with the properties of habitat.
- **PSO7.** Ethics and Effective Citizenship: Contributes the knowledge for sustainable development and nation building.
- **PSO8.** Management Skills: Exhibits management skills in applied branches of Zoology like Apiculture, Sericulture, Aquaculture and Agriculture.
- **PSO9.** Environmental Ethics and Sustainability: Explains the broad understanding of ecosystems, biodiversity and their conservation.
- **PSO10.** Identification of critical problems and issues: Detect the causes and consequences of biodiversity depletion.

Anekant Education Society's Tuljaram Chaturchand College of Arts, Science & Commerce, Baramati *(Autonomous)*

Board of Studies (BoS) in Zoology

From 2022-23 to 2024-25

Sr.No.	Name	Designation	
1.	Mr. Sandip P. Chordiya	Chairman	
2.	Dr. Vitthal B. Nale	Member	
3.	Dr. Deepali M. Sangale	Member	
4.	Dr. Sunil N. Pokale	Vice-Chancellor Nominee	
5.	Dr. Gulab D. Khedkar	Expert from other University	
6.	Dr. Sanjay K. Gaikwad	Expert from other University	
7.	Dr. Yogesh A. Karpe	Industry Expert	
8.	Mr. Kishor U. More	Invitee member	
9.	Mr. Mayur S. Shitole	Invitee member	
10.	Mr. BipinB. Jagtap	Meritorious Alumni	
11.	Ms. Rutuja R. Chavan	Student Representative	
12.	Mr. Subodh M. Nikam	Student Representative	
13.	Mr. Shubham R. Ghadage	Student Representative	
14.	Ms. Tamanna S. Tamboli	Student Representative	

M.Sc.Semester-I

Credit Distribution Structure for M.Sc.-2023-2024 (Zoology)

Year	Level	Sem.	Major		Research	OJT/F	RP	Cum.	Degree
(2 Year PG)		(2 Yr.)	Mandatory	Electives	Methodology (RM)	Р		Cr.	
PG)	6.0	Sem-I	ZOO-501-MJM:Biochemistry & Bioenergetics (Credit 04) ZOO-502-MJM:Cell Biology (Credit 04) ZOO-503-MJM: Zoology Practical-I (Credit 02) ZOO-504-MJM:Zoology Practical-II (Credit 02)	 ZOO-511-MJE: A. Freshwater Zoology & Ichthyology ZOO-511-MJE: B. Biostatistics & Genetics ZOO-511-MJE: C. Biological Techniques (Credit 04) 	ZOO-521- RMResearch Methodology (Credit 04)			20	PG Diploma (after 3
		Sem- II	ZOO-551-MJM: Molecular Biology (Credit 04) ZOO-552-MJM: Developmental Biology (Credit 04) ZOO-553-MJM: Zoology Practical-III (Credit 02) ZOO-554-MJM: Zoology Practical-IV (Credit 02)	ZOO-561-MJE: A. Entomology-I ZOO-561-MJE: B. Animal Physiology-I ZOO-561-MJE: C. Genetics-I (Credit 04)		ZOO- 581- OJT/FP Credit 04		20	Year Degree)
Cu	Cum. Cr. For PG Diploma		24	8	4	4		40]

* 1 Credit = 15hr

Course Structure for M.Sc. Zoology(2023 Pattern)

Sem			Credits				
			Name	Practical			
	Major Mandatory	ZOO-501-MJM	Biochemistry & Bioenergetics	Theory	04		
	Major Mandatory	ZOO-502-MJM	Cell Biology	Theory	04		
	Major Mandatory	ZOO-503-MJM	Zoology Practical-I	Practical	02		
	Major Mandatory	ZOO-504-MJM	Zoology Practical-II	Practical	02		
Ι	Maion Elective	ZOO-511-MJE (A)	Freshwater Zoology & Ichthyology	Theory	04		
	Major Elective	ZOO-511-MJE (B)	Biostatistics & Genetics	Theory	04		
		ZOO-511-MJE (C)	Biological Techniques				
	Research Methodology (RM)	ZOO-521-RM	Research Methodology	Theory	04		
	Total Credits Semester-I				20		
	Major Mandatory	ZOO-551-MJM	Molecular Biology	Theory	04		
	Major Mandatory	ZOO-552-MJM	Developmental Biology	Theory	04		
	Major Mandatory	ZOO-553-MJM	Zoology Practical-III	Practical	02		
	Major Mandatory	ZOO-554-MJM	Zoology Practical-IV	Theory	02		
		ZOO-561-MJE (A)	Entomology-I				
II	Major Elective	ZOO-561-MJE (B)	Animal Physiology-I	Theory	04		
		ZOO-561-MJE (C)	Genetics-I				
	On Job Training (OJT)/Field	ZOO-581-OJT/FP	On Job Training/Field Project	Training /	04		
	Project (FP)		relevant to the major course.	Project			
	Total Credits Semester-II						
	Cumulative Credits Semester I + Semester II						

Name of the Program: M.Sc. Zoology Program Code: PSZOO Class: M. Sc. I Semester: I Course Type: Major (Mandatory) Theory Course Code: ZOO-501-MJM Course Name: Biochemistry and Bioenergetics Number of Credits: 04 Number of Teaching hours: 60

CourseObjectives:-

- Structures of biomolecules.
- Functions of biomolecules.
- Concept of enzymes kinetics.
- Role of enzymes.
- Metabolic pathways of carbohydrates, proteins, lipids and nucleic acids.
- Energetics ofbiomolecules.
- Mechanism of electron transport chain.

CourseOutcomes:-

CO1: Recall the facts about structures of biomolecules.

CO2: Explain the functions of biomolecules.

CO3: Explain the concept of enzymes kinetics.

CO4: Compare the role of enzymes.

CO5: Explain the mechanism of metabolic pathways of carbohydrates,

proteins, lipids and nucleic acids.

CO6: Compare the energetics ofbiomolecules.

CO7: Explain the mechanism of electron transport chain.

TOPICS:

Unit No.	Subunit No.	Details	Teaching Hours
	1.1	Stabilizing Interactions in Biomolecules	
1.	1.2	a. Water: Structure and Functionb. pH and Buffersc. Biological Buffer System	
Biomolecules: Classification, Structure and Function	1.3	Carbohydrates:a. Classification of Carbohydratesb. Structure, general properties and functions	20
	1.4	Lipids: a. Classification b. Structure and function c. Major subclasses.	
	1.5	Vitamins and coenzymes:	

		a. Biochemistry	
		b. Functions	
		Proteins:	
		a. General properties of proteins	
		b. Structure of amino acid	
		c. Structure of proteins: Primary structure	
		and its importance, Secondary structure-	
	1.6	alpha-helix, beta-helix, Ramachandran	
		plot, X ray diffraction, Tertiary structure:	
		Myoglobin, Forces stabilizing, unfolding	
		and refolding Quaternary structure-	
		haemoglobin.	
		d. Biological Roles	
		a. Classification	
	0.1	b. Types of enzymes	
2. Enzymes	2.1	c. Nomenclature	
		d. Properties	
	2.2	Enzyme Kinetics -One Substrate	
		Reaction Michaelis-Menten Equation,	10
		Lineweaver-Burk plot	10
	2.3	Specific Activity	
	2.4	Factors affecting enzyme activity	
	2.5	Enzyme inhibition	
	2.6	Allosteric Enzymes Isozymes (LDH)	
		Internal energy, enthalpy, entropy, concept	
	3.1	of free energy, redox potentials, high energy	
		compounds, structure and function of ATP.	
	3.2	Concepts of metabolism: Metabolic Pathways-Catabolic and anabolic,	
	5.2	Regulation of metabolic pathways.	
3.		Carbohydrate metabolisms:	
Bioenergetics: -		a. Glycolysis	
Metabolic Dethemans and	3.3	b. TCA	30
Pathways and its energetics		c. Glycogenesis, Glycogenolysis and	
ns energencs		Glyconeogenesis	
	3.4	Electron transport chain and	
	5.4	Oxidative phosphorylation.	
	25	Lipid metabolism: Introduction,	
	3.5	Biosynthesis of palmitic acid, Beta	
		oxidation of fatty acid	

REFERENCES

- 1. Voet, D., &Voet, J. G. (2010). Biochemistry. John Wiley & Sons.
- Berg Jeremy, Tymoczko John, StryerLubert(2007), *Biochemistry*. Publisher: W. H. Freeman, New York.
- 3. Calculations, B. (1997) Segel Irvin H. Publisher: John Wiley and Sons, New York, 34.
- 4. Trevor, P. (2004). Enzymes: Biochemistry, Biotechnology and Clinical Chemistry. Horwood Series in Chemical Science.
- 5. Murray, R. K., Granner, D. K., &Rodwell, V. W. (2010). Harper's illustrated biochemistry.
- 6. Nelson, D. L., Lehninger, A. L., & Cox, M. M. (2008). Lehninger principles of biochemistry. Macmillan.

Name of the Program: M.Sc. Zoology Program Code: PSZOO Class: M. Sc. I Semester: I Course Type: Major (Mandatory) Theory Course Code: ZOO-502-MJM Course Name: Cell Biology Number of Credits: 04 Number of Teaching Hours: 60 CourseObjectives:-

- Structures of basic components of prokaryotic and eukaryotic cells.
- Cellular components and their functions.
- Mechanism of cell signaling.
- Cell division and regulation.
- Role of cell cytoskeleton.
- Mechanism of cell death.
- Role of stem cells in tissue repairing.

CourseOutcomes:-

Student will be able to-

CO1: Compare the components of prokaryotic and eukaryotic cells.

CO2: Explain the role of cellular components.

CO3: Compare the mechanisms of cell signaling.

CO4: Explain the concept of cell division.

CO5: Recall the role of cytoskeleton.

CO6: Explain the mechanism of cell death.

CO7: Explain the importance of stem cells in tissue repairing.

TOPICS:

Unit No.	Subu nit No.	Details	Teaching Hours
1. Overview	1.1	Carbon as backbone of biologically important molecules.	
of Chemical Nature of the Cell	1.2	Macromolecules and their role in the living systems.	02
	2.1	Models of cell membranestructure	
2. Plasma Membrane	2.2	Membrane Transport: Carrier proteins (uniporters, symporters and antiporters), Active and passive transport, Voltage and transmitter gated ion channels.	06
	2.3	Membrane potential and synaptic transmission	
3. The Endomem	3.1	Endoplasmic reticulum: Signal peptide hypothesis, protein folding, processing and secretion, lipid	07

brane		synthesis	
System	3.2	Golgi complex: Protein glycosylation and	
and Peroxisom	3.2	proteolytic processing	
es	3.3	Lysosomes: Structure, Role in intracellulardigestion and Apoptosis, Lysosomal	
		Storage Diseases	
	3.4	Peroxisomes and Glyoxysomes: Structure and functions	
	3.5	Intracellular Transport and proteintrafficking	
	4.1	Ultrastructure, Nuclear pore complex	
4. Nucleus	4.2	Export and import of proteins	03
	4.3	Nucleolus, Nuclear lamina and its role in Cell Division	
5. Mitochond ria and Chloroplas t	5.1	Structure, Genetic system, Functions, Protein Import and biogenesis of mitochondria and chloroplast	03
6.	6.1	Polarityproteins	
Extracellul ar Matrix, Cell-Cell	6.2	Cell junctions: tight junction, claudins, desmosome, hemidesmosome, gap junctions and Plasmodesmata	05
Junction and	6.3	Cell adhesion molecules: cadherins, integrins and selectins	
Adhesion	6.4	Extracellular matrix of animal and plant cell	
	7.1	General structure of cellular receptors	
7. Cell Signaling	7.2	Second messengers in cell signaling: Types and their role	
and Transducti	7.3	G-Protein Coupled Receptors and its associated pathway	07
on	7.4	Receptor tyrosine kinases and its associated pathway	
8. Cell	8.1	Check points of cell cycle.	
Cycle and its	8.2	Regulation of Cyclin and Cyclin dependent kinases (Cdk), Check points- role of Rb and p53	04
regulation	8.3	Inhibitors of cell cycle	
	9.1	Microtubules: Structure, MTOC's and functions of microtubules	
9. Cytoskelet	9.2	Intermediate filaments: Structure, types and functions of intermediate filaments.	
on and Motor	9.3	Microfilaments: Actin polymerization, role in cell movement.	07
Proteins	9.4	Dynein, Kinesin and Myosin	
	9.5	Inhibitors of cytoskeleton organization	

	10.1	Characteristics of Cancer Cell	
10. Cancer Biology	10.2	Tumor viruses: Hepatitis B viruses, Adenoviruses, SV40, Papillomaviruses and Retroviruses	07
Diology	10.3	Oncogene and Tumor suppresser gene	
	10.4	Diagnosis, Screening and treatment of cancer	
11. Cell	11.1	Autophagy	
death	11.2	Apoptosis	04
mechanism	11.3	Anoikis	
12. Stem Cell	12.1	Concept, types, self-renewal, pluripotency, differentiation	05
Biology	12.2	Use of stem cells in tissue repair	

REFERENCES

- Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2003). Molecular biology of the cell. Scandinavian Journal of Rheumatology, 32(2), 125-125.
- Lodish, H., D. Baltimore, A. Berk, L. Zipursky, M. Matsudaira and J. Darnell. (1995). Molecular Cell Biology, Eds. 3, Scientific American and W. H. Freeman. NewYork.
- 3. Robertis, D. (1987). Cell and molecular biology.
- 4. Becker, W. M. (2005). The world of the cell.
- 5. Cooper, G. M., & Hausman, R. E. (2016). The Cell: A Molecular Approach.

Name of the Program: M.Sc. Zoology Program Code: PSZOO Class: M. Sc. I Semester: I Course Type: Major (Mandatory) Practical Course Code: ZOO-503-MJM Course Name: Zoology Practical-I Number of Credits: 02 Number of Teaching Hours: 60 CourseObjectives:-

- Principle and working of instruments.
- Preparation of chemicals of different concentrations.
- Preparation of buffers of known pH.
- Estimation of inorganic phosphates and carbohydrates.
- Estimation of amino acids.
- Methodology for vitamin estimation.
- Effect of temperature, pH, activator and inhibitor on enzyme activity.

CourseOutcomes:-

Student will be able to-

CO1: Explain principle and working of instruments.

CO2: Prepare chemicals of different concentrations.

CO3: Prepare buffers of known pH.

CO3: Estimate inorganic phosphates and carbohydrates with suitable method.

CO4: Estimate amino acid.

CO5: Explain the methodology for vitamin estimation.

CO6: Compare the effect of temperature, pH, activator and inhibitor on enzyme activity.

Sr. No	Title of the Practical	E/D	Teaching Hours
1	Preparation of standard Acid and Alkali solutions and acid- base titration.	Е	04
2	Preparation of Buffers of known pH and molarity. Measurement of pH of Various samples and their buffering capacity	E	04
3	Estimation of inorganic phosphates from plasma	Е	04
4	Estimation of Sugar (Glucose) by GOD-POD Method	Е	04
5	Estimation of Tyrosine by FolinCiocalteu Reagent	Е	04
6	Estimation of vitamin 'C' by iodine method.	Е	04
7	Estimation of amylase activity.	Е	04
8	Estimation of protein by Lowry et.al method.	Е	04

9	Determination of optimum pH of enzyme	Е	04	
10	Effect of substrate concentration, pH, temperature, inhibitor and activator on enzyme activity	Е	08	
11	Isolation of starch from corn (on the basis of density)	Е	04	
12	Isolation of cholesterol from egg yolk / human blood Or Determination of acid value of fat	Е	04	
13	Estimation of cholesterol by Zak's method.	Е	04	
14	Estimation of glycine by titrimetric method	Е	04	
E: Experiment, D: Demonstration				

Name of the Program: M.Sc. Zoology Program Code: PSZOO Class: M. Sc. I Semester: I Course Type: Major (Mandatory) Practical Course Code: ZOO-504-MJM Course Name: Zoology Practical-II Number of Credits: 02 Number of Teaching Hours: 60 CourseObjectives:-

• Use of stage and ocular micro-meter.

- Centrifugation for harvesting subcellular molecules.
- Detection of collagen in animal tissues.
- Methodology for DNA and RNA detection.
- Effect of chemicals on mitosis.
- Cell viability test.
- Study of metaphase chromosomes.

CourseOutcomes:-

Student will be able to-

- CO1: Use stage & ocular micro-meter and measure the cell size.
- CO2: Perform the cell fractionation by centrifugal technique.
- CO3: Detect the presence of collagen in animal tissues by appropriate staining method.
- CO4: Detect the nucleic acids by appropriate staining method.
- CO5: Interpret the effect of chemical on mitosis.
- CO6: Performs appropriate test to check the cell viability.
- CO7: Prepare the temporary slides to study metaphasic chromosomes.

Sr. No	Title of the Practical	E/D	Teaching Hours
1	Measurements of cell size using stage micro-meter and ocular micro-meter.	Е	04
2	Differential centrifugation for harvesting subcellular molecules	D	04
3	Effect of Colchicine treatment on Mitosis from any suitable material.	Е	04
4	Demonstration of collagen by Van Gieson's Stain in Liver/Tissue Sections/ <i>Drosophila</i> larvae.	Е	04
5	Differential staining for DNA and RNA in human cheek epithelial cells.	Е	04
6	Aseptic technique and good cell culture practice.	D	04
7	Short term culture of whole blood and preparation of metaphase chromosomes.	Е	04
8	Cell viability assay by Trypan blue exclusion.	Е	04
9	MTT assay for cell viability.	Е	04
10	Feulgen staining for DNA.	Ε	04

11	Study of effect of detergent / salt solution on membrane permeability	Е	04		
12	Study of cell organelles using electron micrographs (any 04)	D	04		
13	Study of stages of mitosis using onion root tips.	Е	04		
14	Study of stages of meiosis using onion floral buds / grasshopper testes	Е	04		
15	Isolation of mitochondria from suitable material	Е	04		
	E: Experiment, D: Demonstration				

Name of the Program: M.Sc. Zoology Program Code: PSZOO Class: M. Sc. I Semester: I Course Type: Major (Elective) Theory Course Code: ZOO-511-MJE (A) Course Name: Freshwater Zoology and Ichthyology Number of Credits: 04 Number of Teaching Hours: 60 CourseObjectives:-

- Types of aquatic habitats.
- Physical & chemical properties of water.
- Aquatic adaptations of various animal groups.
- Economic importance of aquatic animals.
- Classification of fishes
- Anatomy of fishes.
- Fish disease.

CourseOutcomes:-

Student will be able to-

CO1: Explain the types of aquatic habitats.

- CO2: Interpret importance of physical & chemical properties of water foraquatic life.
- CO3: Compare various adaptations in aquatic animals.
- CO4: Explore the importance of aquatic animals for economic development.
- CO5: Classify the fishes based upon their characters.

CO6: Explain the anatomy of fishes.

CO7: Identify the fish diseases based on symptoms.

Unit No.	Subunit No.	Details	Teaching Hours	
	S	ection A: Freshwater Zoology		
	1.1	Lotic Habitat: Major river in India		
1 Types of		Lentic Habitat: Lakes, Ponds and		
1. Types of Aquatic	1.2	Swamps, Bogs lakes and succession	04	
Environment		oflakes	04	
Liivii oliment	1.3	Ephemeral water bodies		
		(Temporaryhabitat).		
2: Physical		Movement of water, depth, viscosity,		
Conditions of	2.1	density, transparency turbidity and	04	
Water		thermal stratification		
3: Chemical 3.1		Dissolved oxygen and carbon di-oxide,		
Conditions of	3.1	pH, phosphates, sulphate content, nitrates	04	
Water	3.2	Acidity, alkalinity, Mg-hardness, Ca-		

TOPICS:

		hardness, dissolvedsolids	
		Importance of chemical conditions to	
	3.3	aquaticlife.	
4: Physiological		-	
and protective	4.1	Protozoa, Rotifera, Crustaceans and	02
adaptations of the	7.1	Fishes.	02
following			
5: Diagnostic			
features and life		Esimuchainens, Tedaslashainens and Clam	
cycle of	5.1	Fairyshrimps, Tadpoleshrimps and Clam shrimps.	03
temporary rainwater pool		sin mps.	
animals			
6: Respiratory			
and locomotory	6.1	Adaptations in freshwater insects and	03
adaptations		their larvae	
7: Adaptations in			
freshwater	7.1	Terrapin and crocodiles	03
reptiles			
8. Economic	8.1	Economic importance of freshwater	
importance of	0.11	molluscs	02
fresh water	8.2	Economic importance of reptiles	
animals		Productivity of water bodies and its	
9. Aquatic habitat	10.1	importance	
		General characters of zooplankton with	
		special emphasis on the characters used	02
10. Zooplanktons	10.1	in taxonomy: Rotifera, Copepoda,	
		Cladocera and Ostracoda	
		Section B: Ichthyology	
1. Classification	1.1	Extant Cyclostomata, Chondrichthyes	
and Diagnostic		and Osteichthyes (9 major orders of	04
Characters (up to		fishes)	01
orders)	1.2	Phylogeny of fishes	
2.External	2.1	Body form, appendages, pigmentation, skin and scales	02
morphology	3.1	Skull	
3. Endoskeleton	3.1	Axial Skeleton	02
J. LINUSKUUUI	3.2	Axial Skeleton Appendicular skeleton.	02
	4.1	Food and feeding habits	
4. Digestion		Digestive system and its anatomical	02
	4.2	modifications.	÷-
	5.1	Structure and functions of gills	
5 Decentra di	5.2	Adaptations for air breathing	0.4
5. Respiration		Role of air bladder in respiration and	04
	5.3	bouyancy	
7. Excretion and	6.1	Glomerular and aglomerular kidneys;	
7. Excretion and Osmoregulation	6.2	Nitrogen (Ammonia, Urea and TMAO)	03
Osmoregulation	0.2	excretions;	

	6.3	Water and salt and balance in stenohaline and euryhaline fish	
	6.4	Role of skin and gills in osmoregulation	
8. Migration in fish	8. Migration in fish		01
	9.1	Structure of gonads	
9. Reproduction	9.2	Gametogenic cycles	03
	9.3	Spawning and parental care	
10 N	10.1	Organization of the central and peripheral	
10. Nervous System and Sense		nervous systems.	03
•	10.2	Eye, lateral line organs and	03
Organs	10.2	chemoreceptors	
	11.1	Functions of the pituitary, thyroid, inter-	
11. Endocrine	11.1	renal and chromaffin tissues,	03
Organs	11.2	Functions of ultimobranchial gland and	05
	11.2	corpuscles of Stannius	
	12.1	Protozoan diseases in fish	
12. Fish Diseases	12.2	Fungal diseases in fish	03
	12.3	Bacterial diseases in fish	

REFERENCES:

- 1. Mellanby, H (1975). Animal life in freshwater, 6th Edn. Chapman-Hall.
- 2. Welch, P. S. (1935). Limnology.
- 3. Hutchinson, G. E., & Edmondson, Y. H. (1957). Treatise on limnology. Wiley.
- 4. Laws, E. A. (2000). Aquatic pollution: an introductory text. John Wiley & Sons.
- 5. Macan, T. T., & Worthington, E. B. (1951). Life in lakes and rivers.
- 6. Bal, D. V., & Rao, K. V. (1984). Marine fisheries. Tata McGraw Hill.
- Bone, Q., N.B. Marshall and J. H. S. Blaxter (1995). Biology of Fishes, Edn.2, Blackie, Academic, Professional (Chapman and Hall), London.
- Hoar, W.S. and D.J. Randall, (1969). Fish Physiology. Vols. I onwards, Academic Press, NewYork
- Jayaram, K.C. (1981). The freshwater fishes of India. Pakistan, Bangladesh, Burma and Sri Lanka- A Handbook. Zool. Survey of India, Academic Press, NewYork.
- 10. Khanna, S.S. (1984). An Introduction to Fishes. Central Book Depot., Allahabad.

Name of the Program: M.Sc. Zoology

Program Code: PSZOO

Class: M. Sc. I

Semester: I

Course Type: Major (Elective) Theory

Course Code: ZOO-511-MJE (B)

Course Name: Biostatistics and Genetics

Number of Credits: 04

Number of Teaching Hours: 60

CourseObjectives:-

- Chemical basis ofheredity.
- Principles of genetics and patterns of inheritance.
- Relative contribution of genes and environment to common disorders.
- Numerical dataanalysis.
- Representation ofdata.
- Correlation between variables for makingconclusions.
- Importance of statistical tests for scientific communications.

CourseOutcomes:-

Student will be able to-

- CO1: Explain the chemical basis ofheredity.
- CO2: Recall the facts about patterns of inheritance.
- CO3: Correlates the contribution of genes and environment in disorders.
- CO4: Analyse numerical data.
- CO5: Represent data by appropriate method.
- CO6: Make conclusions by analysing correlation between the variables.
- CO7: Explain the importance of statistics in scientific communications.

TOPICS:

Unit No.	Subunit No.	Details	Teaching Hours
		Section-I: Genetics	
1.0	1.1	Introduction to Mendelian principles	
1. Gene Interactions and	1.2	Incomplete and co-dominance	
Deviations from	1.3	Dominant Epistasis & Recessive	04
Mendelian	1.5	Epistasis	04
Inheritance	1.4	Duplicate Dominant Epistasis, Duplicate	
mieritance		recessive epistasis	
2. Multiple alleles	2.1	Coat colour in mice	02
	3.1	Linkage, linkage groups, types of	
3. Linkage and	5.1	crossing over	
crossing over	3.2	Models of molecular basis of	04
		recombination	
	3.3	3-point test cross for diploids	
4. Inheritance of	4.1	QTL Mapping	04

qualitative and		Quantitative Genetics: Concepts of	
quantitative and quantitative traits	4.2	penetrance, expressivity and variance,	
quantitative trans	T • <i>L</i>	Heritability	
-		Genetic basis and influence of	
	4.3	environment on quantitative inheritance	
		Genetic structure of populations –Gene	
5. Principles of	5.1	pool, Genotype Frequency, Allelic	
Population		frequency	04
Genetics	5.2	Hardy-Weinberg law and its application	
6. Somatic Cell		Its applications, Gene Therapy, Gene	
Genetics	6.1	transfer technology	03
	7.1	Dominant and recessive disorders,	
7. Human	7.2	Pedigree Analysis	05
genetics -	7.3	Physical and physiological traits	
8. Gene Mutation	8.1	Types, Causes and Detection	03
9. Introduction to ep		Types, eauses and Detection	01
		Section-II: Biostatistics	~
	1.1	Applications and Uses of Statistics	
		Definition of Population, sample, sample	
1. Introduction to	1.2	sizes, Different types of Samples in	~ -
Biostatistics	1.2	scientific experiments	02
2100000000		Exercise and problems related to various	
	1.3	sampling datasets	
	<u> </u>	Some important terms (Class frequency,	
	2.1	class- limits, Class-width, class-mark)	
	2.2	Frequency distribution, Cumulative	
2. Data	2.2	frequency	03
Classification -	0.0	Graphical representation of data	
	2.3	(Histogram, Pie-Diagram, Ogive-curve.)	
	2.4	Exercise and Problems.	
		Concept of central tendency, Types of	
	3.1	central tendency (Arithmetic mean,	
3. Measures of		Median and mode) combinedmean.	
central tendency	3.2	Partition values (Quartiles, Deciles,	04
	5.4	andPercentiles)	
	3.3	Exercise and problems related to Mean	
	5.5	mode median	
	4.1	Concept of dispersion, absolute and	
	1.1	relative measure of dispersion	
		Different measures of dispersion	
4. Measures of		(Range,Quartile- Deviation,	03
dispersion	4.2	Variance and standard deviation,	
		Coefficient of Variation)	
F	4.0	combinedvariance	
	4.3	Exercise and Problems	
	5.1	Bivariate data, concept of correlation,	
5. Correlation	0.1	Types of Correlation, Scatterplot	05
and Regression	5.2	Karl Pearson's coefficient of correlation	~~
		and itsproperties.	

	1		
	5.3	Concept of regression, linear regression,	
		regression coefficients and itsproperties.	
	5.4	Exercise and problems.	
		Some important terms (types of	
	6.1	experiment, sample space and types of	
	0.1	sample space, events and types	
		ofevents.)	
	6.2	Definition of probability (mathematical	
(Duch a hilitar	0.2	and classical) conditionalprobability.	
6. Probability		Concept of random variable, univariate	05
and probability	6.3	probability distribution and its	05
distribution		mathematical expectation.	
	6.4	Some standard probability distributions	
		(binomial, Poisson and normal) their	
		probability distribution, mean, variance	
		and properties of these distribution.	
	6.5	Exercise andProblems.	
		Some important terms (hypothesis,	
	7.1	types of hypothesis, Test, Critical	
		region, acceptance region, type I error,	
		type II error, level of significance,p-	
		value)	
		Test for mean and equality of two	08
7. Test of	7.0	population means, Test for proportion	
hypothesis	7.2	and equality of two	
		populationproportions.	
		Chi-square test for goodness of fit,	
	7.3	Unpaired and paired 't'test,	
	7.4	F test for equality of two	
		populationvariances.	
	7.5	Exercise andProblems.	

REFERENCES:

- 1. William S Klug and Michael R Cummings. Concepts of Genetics. Edn. IX. Prentice Hall Internatl, Inc., New York,2008.
- 2. Trends in Genetics. Elsevier Publications, Amsterdam.
- 3. Lewin, B., Krebs, J., Kilpatrick, S. T., & Goldstein, E. S. (2011). Lewin's genes X. Jones & Bartlett Course.
- 4. Verma, P. S., & Agarwal, V. K. (2009). Genetics, (Multicolour Edition). S. Chand Publishing.
- 5. Russell, P. J. (2006). iGenetics: A Molecular Approach. ed. B. Cummings.
- 6. G. Vijayalakshmi and C. Sivapragasam. (2008) Research Methods Tip and Techniques, MJP Publishers, Chennai. WWW.mjppublishers.com
- 7. Principles And Practice of Biostatistics : Dr J.V.Dixit
- 8. Antonisamy, B., Christopher, S., & Samuel, P. P. (2010). Biostatistics: principles and practice. Tata McGraw Hill Education.
- 9. Sokal, R. R., & Rohlf, F. J. (1987). Biostatistics. Francise& Co, New York.

Name of the Program: M.Sc. Zoology

Program Code: PSZOO

Class: M. Sc. I

Semester: I

Course Type: Major (Elective) Theory

Course CodeZOO-511-MJE (C)

Course Name: Biological techniques

Number of Credits: 04

Number of Teaching Hours: 60

CourseObjectives:-

- Advanced techniques in Life sciences.
- Principles and working of instruments.
- Techniques used in research.
- Databases and their applications.
- Cell culture technology.
- Importance of bioinformatics.
- Characterization of biomolecules.

CourseOutcomes:-

Student will be able to-

CO1: Recall facts about techniques used in Life sciences.

CO2: Demonstrate the working of laboratory instruments.

CO3: Choose appropriate technique for research.

CO4: Analyse obtained data by using databases.

CO5: Compares different cell culture techniques.

CO6: Explains importance of bioinformatics

CO7: Characterizes biomolecules using appropriate techniques.

TOPICS:

Unit No.	Subunit No.	Details	Teaching Hours
	1.1	Microscopy: Resolution and its limit, Improvement of resolution.	
1. Microscopy	1.2	Principles and Applications of: Phase Contrast, Fluorescence, Confocal, Transmission And Scanning Electron, Atomic Force Microscopy	08
	1.3	Live Cell Imaging	
		Principles of the following	
	2.1	UV-Visible Spectroscopy	
	2.2	Atomic Absorption Spectroscopy	
2. Spectroscopy	ору 2.3	Molecular Spectroscopy	08
	2.4	IR Spectroscopy	
	2.5	Circular Dichroism	
	2.6	MALDI-TOF	
3. Centrifugation	3.1	Principle & Basic Theory ofUltracentrifuge	04

		Differential and Density Gradient		
	3.2	Centrifugation		
	4.1	Introduction to Electrophoresis		
	4.2	Native PAGE	0.4	
4. Electrophoresis	4.3	SDS-PAGE	04	
	4.4	2D- Gel Electrophoresis		
	5.1	Thin Layer Chromatography		
5. Principles and	5.2	Adsorption Chromatography		
Applications of	5.3	Partition Chromatography.	10	
Chromatograp	5.4	GC-MS	10	
hy	5.5	HPLC		
	5.6	HPTLC		
	6.1	Real time PCR		
6. Advance	6.2	DNA fingerprinting		
	6.3	DNA Markers: RAPD, RFLP & AFLP		
	6.4	DNA microarray		
Techniques in	6.5	DNA sequencing technology (Sanger	12	
Biology	0.5	and Next generation)	12	
Diology	6.6	Protein Microarray		
	6.7	Protein sequencing		
	6.8	FRET analysis		
	6.9	Flow Cytometry		
7. Computer	7.1	Databases and their applications	05	
Application	7.2	Introduction to Bioinformatics	05	
8. Cell Culture	8.1	Introduction to cell culture		
Techniques	8.2	Animal Cell culture	05	
reeninques	8.3	Potential use of cell cultures		
9. Introduction to	9.1	Basic concepts of Nanotechnology		
Nanotechnolog	9.2	Characterization techniques: FTIR & FESEM	04	
У	9.3	Applications of Nanotechnology		

REFERENCES:

- 1. Binns, C. (2021). *Introduction to Nanoscience and Nanotechnology*. United States: Wiley.
- 2. Nanotechnology and the Environment. (2020). (n.p.): IntechOpen.
- 3. McMillan, V. E., & McMillan, V. (2012). *Writing papers in the biological sciences*. Macmillan.
- 4. Wilson, K., & Walker, J. (Eds.). (2010). *Principles and techniques of biochemistry and molecular biology*. Cambridge university press.
- 5. Lacey, A. J. (Ed.). (1999). *Light microscopy in biology: a practical approach* (Vol. 195). OUP Oxford.
- 6. Bozzola, J. J., & Russell, L. D. (1999). *Electron microscopy: principles and techniques for biologists*. Jones & Bartlett Course.
- 7. Kiernan, J. A. (1999). Histological and histochemical methods: theory and practice. *Shock*, *12*(6), 479.
- 8. Sheppard Jr, N. F., Eden, M., & Kantor, G. (1994). 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
- Ullmann, D. (1990). Day, RA, How to Write and Publish a Scientific Paper. Cambridge etc., Cambridge University Press 1988. XI, 211 pp., £ 7.95 P/b. ISBN 0-521-36760-3.
- 10. Trelease, S. F. (1958). How to write scientific and technical papers.

Name of the Program: M.Sc. Zoology Program Code: PSZOO Class: M. Sc. I Semester: I Course Type: Research Methodology (RM Theory) Course Code: ZOO-521-RM Course Name: Research Methodology Number of Credits: 04 Number of Teaching Hours: 60

CourseObjectives:-

- Overview of the research methodology.
- Technique of defining a research problem.
- Importance of literature review in research.
- Research designs and their characteristics.
- Sampling designs and methods of data collections.
- Parametric tests of hypotheses and Chi-square test.
- Art of writing research reports and research papers.

CourseOutcomes:-

Student will be able to-

- CO1: Explain concept of research methodology.
- CO2: Define research problem.
- CO3: Explain need of literature review in research.
- CO4: Prepare research designs and explain their characteristics
- CO5: Collect and present the data.
- CO6: Analyse data by using appropriate tests.
- CO7: Write research report and research paper.

	Unit No.	Subunit No.	Details	Teaching Hours
		1.1	Introduction to research methodology: Meaning of research and objectives of research	01
1.	Research	1.2 1.3 1.4	Types, approaches and significance of research	01
	Methodology		Research methods versus methodology	01
			Criteria of good research; Problems encountered by researchers in India.	01
2	2. Defining the Research Problem	2.1	Research problem and Selecting the problem	
2.		2.2	Necessity of defining the problem	01
	TODICIII	2.3	Technique involved in defining a problem	01

	3.1	Place of the literature review in research; Bringing clarity and focus to research problem	01
	3.2	Improving research methodology; Broadening knowledge base in research area and enabling contextual findings	02
3. Reviewing the literature	3.3	Review of the literature; Searching the existing literature; Reviewing the selected literature, Developing a theoretical framework	02
	3.4	Developing a conceptual framework; Writing about the literature reviewed	02
	4.1	Meaning of research design; Need for research design; Features of a good design	02
4. Research Design	4.2	Important concepts relating to research design, Different research designs,	02
	4.3	Basic principles of experimental designs and important experimental designs.	02
	5.1	Design of Sampling: Introduction and sample design	01
5. Design of Sample Surveys	5.2	Sampling and non-sampling errors; Sample survey versus census survey	02
	5.3	Types of sampling: Probability and Non-Probability	01
	6.1	Qualitative and quantitative data; Classification of measurement scales; Goodness of measurement scales	03
6. Measurement and Scaling	6.2	Sources of error in measurement; Techniques of developing measurement tools; Scaling techniques	03
	6.3	Multidimensional scaling	01
7. Data	7.1	Introduction; Experiments and surveys; Collection of Primary and secondary data	02
Collection	7.2	Selection of appropriate method for data collection; Case study method	02
8. Testing of Hypotheses	8.1	Hypothesis; Basic concepts of hypothesis testing	03
	8.2	Procedure for hypothesis testing	02

		Hypothesis testing for mean,	
	8.3	proportion, variance; P-Value	04
		approach	
	8.4	Limitations of the tests of	
	0.7	hypothesis	
	9.1	Test of difference of more than	02
		two proportions	02
9. Chi-square	9.2	Test of independence of	02
Test		attributes	02
	9.3	Test of goodness of fit	01
	9.4	Cautions in using chi square tests	01
	10.1	Types of reports; Different steps	
		in report writing; Significance of	04
10 Depart		report writing	
10. Report	10.2	Layout of the research report	01
Writing		Mechanics of writing a research	
	10.3	report; Precautions for report	02
		writing	
	11.1	Layout of a Research Paper	01
11. Paper	11.0	When and where to publish?;	02
	11.2	Impact factor of journals	02
Writing		Ethical issues related to	
	11.3	publishing; Plagiarism and Self-	02
		Plagiarism	

REFERENCES:

- Kothari, C. R. (2004). Research methodology: Methods and techniques. New Age International.
- 2. Kumar, R. (2018). Research methodology: A step-by-step guide for beginners. Sage.
- 3. Fink, A. (2019). Conducting research literature reviews: From the internet to paper. Sage publications.
- Trochim, W. M., & Donnelly, J. P. (2001). Research methods knowledge base (Vol. 2). Macmillan Publishing Company, New York: Atomic Dog Pub.

Examination Pattern / Evaluation Pattern

Course Credits	No. of Hours per Semester Theory/Practical	No. of Hours per Week Theory/Practical	Maximum Marks	CE 40 %	ESE 60%
1	15 / 30	1/2	25	10	15
2	30 / 60	2/4	50	20	30
3	45 / 90	4/6	75	30	45
4	60 / 120	4 / 8	100	40	60

Teaching and Evaluation (for Major, Minor, AEC, VEC, IKS courses)

Teaching and Evaluation (for VSC, SEC & CC courses)

- Evaluation to be done by Internal & External Experts
- No descriptive end semester written examination
- Evaluation to be done at Department level preferably prior to commencement of Theory /Practical Examinations
- Evaluation to be done on the Skills gained by student