SYLLABUS STRUCTURE (A.Y.2020-21)

Class :F.Y.B.Sc. (Computer Science)				
	Semester I	Semester II		
CSCO 1101	Basic Programming using C	CSCO 1201	Advanced Programming using C	
CSCO1102	DBMS-I	CSCO 1202	DBMS-II	
CSCO 1203	Lab Course I : Basics of C	CSCO 1204	Lab Course II : DBMS I & II	
	&Advanced C			

Class :S.Y.B.Sc. (Computer Science)				
;	Semester III		Semester IV	
CSCO 2301	Data Structures using C	CSCO 2401 Object Oriented Concepts using Java		
CSCO2302	Introduction to Web	CSCO2402 Software Engineering		
	Technology			
CSCO2303	Lab Course I based On	CSCO2403	Lab Course II: based On CSCO2102	
Practical	CSCO2101 & 2201	Practical	& CSCO2202 with Mini Project	

- S.Y.B.Sc. (Computer Science) Credit Structure -

Subject		Semeste	er I		Seme	ster II		
	Paper	Paper	Paper III	Paper IV	Paper	Paper	Paper IV	Total
	- 1	II	Practical	Practical	ı	II	Practical	
Computer Science	3	3	2	Grade	3	3	Grade	16
Mathematics	3	3	2		3	3		16
Electronics	3	3	2		3	3		16
English	3				3			6
Evs.					-	-		2
Certificate Courses 2				2	2		4	

Total Number of Credits = 54 (Core) + 2 (EVS) + 4 (Certificate Courses) = 60

1 Theory Credit = 16 Lectures

SYLLABUS (CBCS) FOR S. Y. B. Sc. (Computer Science)

(w.e.f from June, 2020)

Academic Year 2020-2021

Class: S.Y. B. Sc.(Computer Science) (Semester- III)

Subject: Computer Science **Paper Code:** CSCO 2301

Title of Paper: Data Structure Using C **Paper:** I

Credit: 3 (4 Lectures/Week) No. of lectures: 48

Prerequisites:

- Basic knowledge of algorithms and problem solving.
- Knowledge of C Programming Language.

Objective:

- 1. To learn the systematic way of solving problem
- 2. To understand the different methods of organizing large amount of data
- 3. To efficiently implement the different data structures
- 4. To efficiently implement solutions for specific problems

Learning Outcomes: On completion of the course, student will be able to

- 1. Use well-organized data structures in solving various problems.
- 2. Differentiate the usage of various structures in problem solution.
- 3. Implementing algorithms to solve problems using appropriate data structures.

1. Introduction to data structures

[2]

- 1.1 Concept
- 1.2 Data type, Data object, ADT
- 1.2.1 Data Type
- 1.2.2 Data Object
- 1.2.3 ADT -Definition, Operation, examples on rational number
- 1.3 Need of Data Structure
- 1.4 Types of Data Structure

2. Algorithm analysis

[3]

- 2.1 Algorithm definition, characteristics
- 2.2 Space complexity, time complexity
- 2.3 Asymptotic notation (Big O, Omega Ω , Theta Notation Θ)

3. Linear data structures

[6]

- 3.1 Introduction to Arrays array representation
- 3.2 Sorting algorithms with efficiency Bubble sort, Insertion sort, Merge sort, Quick Sort
- 3.3 Searching techniques –Linear Search, Binary search

4. Linked List

[8]

- 4.1 Introduction to Linked List
- 4.2 Implementation of Linked List Static & Dynamic representation,
- 4.3 Types of Linked List
- 4.4 Operations on Linked List create, display, insert, delete, reverse, search, sort, concatenate &merge
- 4.5 Applications of Linked List polynomial manipulation
- 4.6 Generalized linked list Concept and Representation

5. Sta	ncks	[6]
	5.1 Introduction	
	5.2 Representation- Static & Dynamic	
	5.3 Operations – Create, Init, Push, Pop & Display	
	5.4 Application - infix to postfix, infix to prefix, Evaluation of Expression	
	5.5 Simulating recursion using stack	
6. Qu	eues	[4]
	6.1 Introduction	
	6.2 Representation - Static & Dynamic	
	6.3 Operations – Create, Init, Insert, Remove & Display	
	6.4 Circular queue, priority queue (with implementation)	
	6.5 Concept of doubly ended queue (Dequeue)	
7. Tro	ees	[12]
,, <u>1</u> 1,	7.1 Concept & Terminologies	[]
	7.2 Binary tree, binary search tree	
	7.3 Representation – Static and Dynamic	
	7.4 Operations on BST & Heap Tree – create, Insert, delete, traversals (preorder, inorde	r.
	postorder), counting leaf, non-leaf & total nodes, non recursive inorder traversal	- ,
	7.5 Application - Heap sort	
	7.6 Height balanced tree- AVL trees- Rotations, AVL tree examples.	
8. Gr	aph	[7]
	8.1 Concept & terminologies	
	8.2 Graph Representation – Adjacency matrix, adjacency list, inverse Adjacency list, adjacency multi list, orthogonal list	
	8.3 Traversals – BFS and DFS	
	8.4 Spanning Tree	
	8.5 Applications – AOV network – topological sort, AOE network – critical path	
Refer	rences:	
	1. Fundamentals of Data Structures By Horowitz Sahani (Galgotia)	

2. Data Structures using C and C++ --- By Yedidyah Langsam, Aaron M. Tenenbaum,

3. Introduction to Data Structures using C---By Ashok Kamthane 4. Data Structures using C --- Bandopadhyay & Dey (Pearson)

5. Data Structures using C ---By Srivastav

Moshe J. Augenstein

Class: S.Y. B. Sc.(Computer Science) (Semester- III)

Subject: Computer Science Paper Code: CSCO 2302

Credit: 3 (4 Lectures/Week) No. of lectures: 48

OBJECTIVES: Students successfully completing this course will be able:

- 1. To understand different Web technologies.
- 2. To keep pace with the rapidly changing landscape of web application development.
- 3. To Design dynamic and interactive web pages.

	Title and Contents	No. of Lectures
Unit 1	Basics of Web Design	
	1.1 History of the Internet	
	1.2 World Wide Web Consortium (W3C)	
	1.3 Personal, Distributed and Client/Server Computing	04
	1.4 Key Software Trend: Object Technology	
	1.5 Software Technologies	
	1.6 Client Server Architecture	
Unit 2	Introduction to HTML5	
	2.1 Difference between HTML & HTML5	
	2.2 HTML Document and Basic Structure	
	2.3 Working with HTML Text, Heading, Paragraph, formatting	12
	2.4 HTML Color, Link, Image	
	2.5 HTML Lists, Tables and Frames	
	2.6 HTML Forms Block, Layout	
	2.7 Browser Portability	
Unit 3	Specific Elements of HTML5	
	3.1 Header & Footer	
	3.2 Navigation Section	
	3.3 Article & Aside	9
	3.4 The Meter Element	
	3.5 Working with Hyperlinks and Multimedia	
	3.6 Working with Forms and controls.	
Unit 4	The Basic of CSS	
	4.1 Into. Concepts of CSS & Creating of CSS, Using Inline CSS, CSS Color	
	4.2 Using Internal CSS, Using ID's and Classes, Creating External CSS.	16
	4.3 Linking to External CSS, Inefficient Selectors and Efficient Selectors.	
	4.4 HTML Elements State, the CSS Box Model, Fonts	
	4.5 Introduction to CSS 3.0	
	4.6 Alpha Color Space, Opacity	
Unit 5	JavaScript	
	5.1 Introduction to JavaScript	3
	5.2 JavaScript Basics – Data Types, Control Structure	
	5.3 JavaScript Functions	
	5.4 Working with events	
	5.5 JS Popup boxes	
	5.6 JavaScript Objects	
Unit 6	Emerging Trends in Web Technologies	
	6.1 Introduction to –	4
	6.1.1) CMS-Wordpress/Drupal/Joomla	
	6.1.2) jQuery	

6.1.3) AngularJS	
6.1.4) Bootstrap	

Note: Regular Practical assignment on HTML5 are 50% and one mini Project.

References:

- 1) Html & CSS: The Complete Reference, Fifth Edition by Thomas A. Powell and published by McGraw Hill.
- 2) HTML 5 in simple steps by Kogent Learning Solutions Inc., Publisher Dreamtech Press
- 3) Head First HTML with CSS & XHTML Book by Elisabeth Freeman and Eric Freeman.
- 4) The Essential Guide to CSS and HTML Web Design Book by Craig Grannell.
- 5) Beginning XML by Joe Fawcett, Liam R.E. Quin & Danny Ayers Published by John Wiley & Sons, Inc.

Class: S.Y. B. Sc.(Computer Science) (Semester- III)

Subject: Computer Science Paper Code: CSCO 2303

Title of Paper: Lab I based On Data structure **Paper:** III

Credit: 2 (3 Hour Practical /batch/Week) No. of Practical's: 12

Prerequisites:

- Basic knowledge of algorithms and problem solving.
- Knowledge of C Programming Language.
- ➤ Assignment 1 Sorting Algorithms
 - o Bubble Sort
 - o Insertion Sort
 - Quick Sort
 - o Merger Sort
- ➤ Assignment 2 Recursive Sorting Algorithms
 - o Quick sort,
 - o Merge Sort
- ➤ Assignment 3 Searching Method
 - o Linear search,
 - o Binary search
- > Assignment 4 Stack
 - Static Stack Implementation
 - o Dynamic Stack Implementation
- ➤ Assignment 5 Queue
 - o Static and Dynamic Implementation
 - o Linear Queue,
 - o Circular queue
- ➤ Assignment 6 Linked List
 - o Dynamic Implementation of Singly Linked List
 - o Dynamic Implementation of Doubly Linked List
 - o Dynamic Implementation of Circular Linked List.
- ➤ Assignment 7 Tree
 - o Binary Search Tree Traversal: Create, add, delete, and display nodes.
- > Assignment 8 Graph
 - Adjacency matrix to adjacency list conversion, in degree, out degree

Class: S.Y. B. Sc.(Computer Science) (Semester- III)

Subject: Computer Science Paper Code: CSCO 2304

Title of Paper: Lab II: based On Web Technology
Credit: 2 (3 Hour Practical/Week/batch)
Paper: IV (Grade)
No. of Practical: 13

OBJECTIVES: Students successfully completing this course will be able:

1. To understand different Web technologies.

- 2. To keep pace with the rapidly changing landscape of web application development.
- 3. To Design dynamic and interactive web pages.

Learning Outcome:

- 1. To understand different Web technologies.
- 2. To keep pace with the rapidly changing landscape of web application development.
- 3. To Design dynamic and interactive web pages.

	Assignment on Web Technology Using (HTML5, CSS & Java Script)		
Sr. No.	Assignment Name		
1	Be acquainted with elements, Tags and basic structure of HTML files.		
2	Develop the concept of basic and advanced text formatting.		
3	Practice the use of multimedia components in HTML documents.		
4	Designing of webpage-Document Layout, Working with List, Working with Tables.		
5	Practice Hyper linking, Designing of webpage-Working with Frames, Forms and Controls.		
6	Prepare creating style sheet, CSS properties, Background, Text, Font and styling etc.		
7	Working with List, HTML elements box, Positioning and Block properties in CSS.		
8	Designing with cascading style sheet-Internal and External style sheet.		
9	Working with CSS 3.0, Alpha Color Space, Opacity		
10	Practice the use JavaScript Basics Programs Data Types, Control Structure		
11	Develop the concept of basic and advance using JavaScript Functions		
12	Practice the use JavaScript events (onClick, onMousemove and onMouseover events of button object)		
13	Designing event driven JavaScript program and use Popup boxes		
14	Working with JavaScript Objects		