Anekant Education Society’
Tul°a ociety’s
Jaram Chaturchand College of Arts, Science and

Commerce, Baramati.
(Autonomous)
Department of BBA (Computer Application)

C programming

Course Objectives

1. To introduce students to the histor

language, including its fundamental ¢
and identifiers.

y and basic structure of the C programming
oncepts such as character sets, tokens, keywords,

. To_ tez.lch stud.ents how to perform console-based 1/0 operations, including the use of
built-in functions for formatted input and output.

. To familiarize students with decision-making structures (if statements, switch

statements) and looping constructs (for, while, and do-while loops) to control program
flow effectively.

4. To introduce the concepts of functions and pointers, including their definitions, types,

and applications in program design, along with memory management through dynamic
allocation.

5. To develop students' understanding of arrays (one-dimensional and two-dimensional)
and strings, including operations, memory allocation, and the use of standard library
functions.

6. To explain the concepts of structures and unions, including their definitions,
declarations, and member access, and to differentiate between the two.

7. To introduce the use of the C pre-processor, including macro substitution, file
inclusion, and conditional compilation techniques.

8. To teach students about file handling in C, including file operations, modes, and
random access, along with the use of command line arguments.

Course Outcomes :
By the end of this course, students should be able to:
CO1. Explain the history, structure, and fundamental elements of the C
programming language. |
CO2. Use built-in functions effectively to manage console input and output,

including formatted data handling.




COa3.

CO4.

COs.

CoOe.

CO7.

COs.

Apply decision-making structures and looping constructs to control the flow of ¢
programs.

Create and utilize functions, understand calling mechanisms (call by value and
reference), and manipulate pointers for effective memory management.

Cre?ate and manipulate one-dimensional and two-dimensional arrays, and work with
strings using standard and custom functions.

Define and use structures and unions to organize data efficiently,
Understanding their respective advantages.

Use C pre-processor directives for macro substitution, conditional compilation, and
file inclusion.

Open, read,. write, and manipulate files using appropriate C functions, and handle
command line arguments for program input.

Syllabus
Chapter - Topics No. of
No. Lectures
1 Introduction to C language 3

1.1 History
1.2 Basic structure of C Programming
1.3 Language fundamentals
1.3.1 Character set, tokens
1.3.2 Keywords and identifiers
1.3.3 Variables and data types
1.4 Operators
1.4.1 Types of operators
1.4.2 Precedence and associativity
1.4.3 Expression
2

2 Managing I/O operations

2.1 Console based 1I/0 and related built-in I/0 functions

2.1.1 printf(), scanf()
2.1.2 getch(), getchar()
2.2 Formatted input and formatted output




Decision Making and looping
3.1 Introduction
3.2 Decision making structure
3.2.1 If statement
3.2.2 If-else statement
3.2.3 Nested if-else statement
3.2.4 Conditional operator
3.2.5 Switch statement
3.3 Loop control structures
3.3.1 while loop
3.3.2 Do-while loop
3.3.3 For loop
3.3.4 Nested for loop
3.4 Jump statements
3.4.1 break
3.4.2 continue
3.4.3 goto
3.4.4 exit
Functions and pointers
4.1 Introduction
4.1.1 Purpose of function
4.1.2 Function definition
4.1.3 Function declaration
4.1.4 Function call

4.2 Types of functions
4.3 Call by value and call by reference

4.4 Storage classes
4.5 Recursion
4.6 Introduction to pointer
4.6.1 Definition
4.6 2 Declaration
4.6.3 Initialization
4.7 Indirection operator and address of operator
4.8 Pointer arithmetic
4,9 Dynamic memory allocation
4,10 Functions and pointers
Arrays and Strings
5.1 Introduction to one-dimensional Array
5.1.1 Definition
5.1.2 Declaration
5.1.3 Initialization
5.2 Accessing and displaying array elements
5.3 Arrays and functions
5.4 Introduction to two-dimensional Array

" 5.4.1 Definition




