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A comprehensive review on Advancements in Metal Oxide photocatalysis: Exploring Ternary  
and Binary Systems  
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---------------------------------------------------------------------------------------------------  

Abstract:  

Metal oxide have emerged as distinguished candidates for photocatalysis, presenting  
sustainable answers for harnessing solar power and environmental remediation. This evaluation delves  
into recent tendencies in each binary and ternary metallic oxide as photocatalysis. Binary oxides,  
together with titanium dioxide (TiO2) and Zinc oxide (ZnO), have been significantly studied, but their  
barriers have spurred investigated into ternary systems. Ternary metal oxide (TMOs), incorporating  
three one of a kind metallic factor, exhibit better photocatalytic properties due to synergistic  
consequences arising from diverse digital and optical traits. This summary gives a view of  
compositions of binary and ternary metallic oxides, emphasizing their roles in tactics like water  
splitting, pollutant degradation and hydrogen manufacturing. The challenges and future possibilities in  
metal oxide photocatalysis also are mentioned, highlighting the possible combination of binary and  
ternary metal oxides with their roles. At the same time as binary metallic oxides have laid the  
foundation for photocatalysis, the inherent boundaries have inspired the investigation of ternary  
counterparts, unveiling synergistic results that decorate performance. TMOs photocatalysts exhibit  
various compositions and programs, showcasing their potential in addressing global challenges.  
Understanding mechanisms consisting of price carriers, surface states, and doping techniques gives  
important insights for optimizing each binary and ternary systems. This overview underscores the  
significance of modern substances layout and synthesis techniques to liberate the total potential of  
metal oxide photocatalysts. As studies in this discipline keeps, metal oxides stand poised to contribute  
substantially to a sustainable and cleanser future.  

Keywords: Metal oxide, Binary and ternary metal oxide, Photocatalyst.  
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Introduction:  

Water covers across the earth is about (70%) of planet’s surface. Water which is smooth  
and secure is essential to all residing beings [1]. It plays a vital role in biological process including  
hydration, digestion and cellular functions. Human activities, industrial process, and agriculture have  
significant impacts on water quality and availability. Issues such as water pollution, over extraction of  
ground water, and climate change can affect the balance of water resources. Sustainable management  
of water is crucial for maintaining ecosystem and ensuring the well- being of human societies. Due to  
fast increasing industrialization and world population is mainly responsible for water pollution,  
because hazardous waste is directly mixed into the water and it is not only effect on human but also  
aquatic life which present in water [2]. During each year about 1.8 million children are dying due to  
drinking polluted water, [3-4] also lot of diseases causes due to polluted water and thus purification of  
water is paramount importance. However, availability of surface water mostly invariable and also  
qualities of water is always being declined due to continuous release of chemicals direct to  
environment, mainly due to aggravation of agricultural, industrial, domestic, pharmaceutical, etc.  
production [5-6]. There are a lot of techniques used for water purification. Now a days purification of  



water is carried out usually form physical and chemical techniques like UV treatment, chlorination,  
ozonation, etc. Purification techniques are depending on the region, available sources and also  
pollutants present in water [7-11].  

Photocatalysis plays crucial role in the development of sustainable technologies, particularly  
in the context environmental protection clean energy production. Photocatalysis is a process that uses  
light to activate a substance (catalyst) to speed up a chemical reaction. The catalyst involved in  
photocatalysis is typically a semiconductor material that absorbs photons of light and uses that energy  2525

to drive a chemical reaction. This process is widely studied and applied in various fields, including  323232

environmental remediation, water purification, and energy conversion. In this process it utilizes solar  
energy or UV- Visible light for degradation of organic pollutants into inorganic particle [12-18]. Since  3333

there are a variety of metallic semiconductor which used as a photocatalytic material such as (TiO ,  2
CaO, ZnO, Wo , ZnWO , ZrO , BiTiO , SrTiO , Fe O , Ag CO , BiOBr, BiOCl, CaFe O , BiOCl,  3 4 2 3 3 2 3 2 3 2 4
ZnFe O ) and metal sulphide such as (ZnS, CdS, CuInS , AgIn S etc.) Metal oxide have gained  2 4 2 5 8 
significant attention in the field of photocatalysis due to their unique properties and potential  191919

applications in various environmental and energy- related process. It’s important to note that the  
effectiveness of a photocatalyst depends on various factors, along with specific application, light  
source, and target molecules. Researchers continue to explore and develop new material oxide  
photocatalysts for improved performance and expanded applications. Depending upon the properties  
of metal oxide there are a various type of photocatalysis found in nanoscience which are used for water  
purification. Some of them are listed below [19-33].  

Fig.No.1: Types of Photocatalysis used to remove pollutants from water.  

Photocatalysis  
Type  
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There are a various deposition techniques are used to deposit above metal oxide in nanoscale range like  
a thin layer on glass/conducting plate or as an electrode [34]  

CeO2  
Fe O2 3  

Bi S /Bi O /Bi O  2 3 2 3 2
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Table No.1: Thin film deposition Techniques with materials and application.  

Sr.No. Deposition Method  Thin film material  

ZnO, SnO -Fe O ,  2 2 3

TiO , Gd-CeO2 2  

ZnS, PbS, ZnO  

Application  

1.  Ultrasonic Spray  

Pyrolysis  

Solar cell, sensors, Metal oxide  

coating, solid oxide fuel Cell, Photocatalysis [35]  

Solar cell, Optoelectronics,  

Photocatalysis [36-38]  

2.  Chemical Bath  

Deposition  

Method  

3.  Successive Ionic  

Layer  

CdO, ZnO, CuO  Gas Sensing, Photocatalysis,  

Supercapacitor [39-41]  

Adsorption and  

reaction (SILAR)  

Sol-gel Method  4.  

5.  

6.  

TiO , TiO -SiO ,  2 2 2

CZTS  

Solar cell, Photocatalysis, Gas Sensing  

Self-Cleaning [42-45]  

Electrodeposition  Cu O, Ga:CdS,  2

Co(OH) , WO2 3  

B: ZnO, F: Mn O3 4  

Optoelectronics, Solar cell,  

Supercapacitor, Photocatalysis [46-49]  

Solar cell, Optoelectronics,  Chemical Vapour  

Deposition  Photocatalysis, Gas sensing [50-51]  

(CVD)  

7.  Plasma enhanced-  

Chemical  

TiO , SiO2 2  Antireflecting coating, dielectric and biomedical  

applications, Photocatalysis [52-55]  

Vapour deposition  

8.  

9.  

Magnetron Sputtering TiO -SiO , CdTe,  2 2 Photocatalysis, Solar cell [56-57]  

Surface acoustic wave application, photovoltaic and  

optoelectronic application [58-59]  

Photocatalysis, Photovoltaic, Supercapacitor  

[60-62]  

Triode Sputtering  AlN, In O2 3  

10.  DC sputtering  TiO , ITO, Mn N2 3 2  

11.  

12.  

Flash evaporation  

Laser Evaporation  

Α-FAPbI , CdTe  3

NiMoS ,  2

Solar cells [63-64]  

Dye- sensitized solar cells,  

TiO /Au/TiO2 2  Photocatalysis [65-66]  



Photocatalysis:  

Photocatalysis refers to the acceleration of a chemical reaction through the  
absorption of light by a substance known as a photocatalyst. Photocatalysis is a process that involves  
the use of a catalyst to accelerate a photoreaction, typically driven by light. Efficiency of  
photocatalysts depends on various factors such as bandgap, charge carrier mobility, surface area,  
ability to suppress recombination Photocatalysis. In this process light is used to activate catalyst to  
speed up chemical reaction. Fujishima et al. use TiO as a photocatalyst for the production O and  2 

323232
2 
3333

H from water and discovered water photolysis [67]. For expansion in other potential application  2 
and to improve the photocatalytic efficiency the simple binary metal oxide or metal free  
semiconductor, such as ZnO, TiO2, WO3, etc have been widely studied as a photocatalyst [68-73].  
The efficiency of photocatalytic method depends on properties of photocatalyst such as a) surface  
area material which includes adsorption phenomenon b) morphology of a material on which  
electron-hole recombination depends [74].  

Some important Points about Photocatalysis:  

1. Semiconductor Catalysts: Photocatalysis often involves semiconductor materials, such as  
titanium dioxide (TiO ) or Zinc Oxide (ZnO). These materials can absorb light energy and  2
generate electron- hole pairs, initiating chemical reactions.  

2. Absorption of Photons: When photocatalyst is exposed to light, it absorbs photons. The  
energy from these photons is sufficient to excite electrons in the semiconductor material from  2525

the valence band to the conduction band and form electron-hole pairs.  
3. Generation of Electron-Hole Pairs: The absorbed energy promotes electron from the  

valence band to conduction band and leave behind a positively charged hole in the valence  
band. The formation of these electron-hole pairs is a key step in the photocatalytic process.  323232

4. Redox Reactions: Separated electrons and holes in the semiconductor can participate in the  
redox reactions.  

5. Reaction with target Molecules: The excited electrons and holes migrate to the surface of  
the semiconductor and react with adsorbed molecules or contaminants.  

6. Regeneration of Catalyst: Catalyst provide a pathway for electron-hole pairs. After the  
completion of reaction catalyst can return to its original state and cycle repeated as long as  
light is available. It does not take part in a chemical reaction; it only increases the rate or  
speed of chemical reaction.  

7. Applications:  
 Environmental Remediation: To remove the pollutants from air and  

photocatalysis method is used. The reactive species generated by the catalyst  
can break down organic pollutants, toxins and pathogens.  3535

 Water Purification: It can be employed to disinfect water by killing bacteria  
and other microorganisms.  

 Self-Cleaning surfaces: Photocatalytic materials are used to create self-  
cleaning surfaces, as they can break down and remove organic contaminants  
when exposed to light.  

 Hydrogen Production: Photocatalysis is also investigated for its potential in  
generating hydrogen through water splitting, which is a clean and sustainable  
energy source.  

8. Challenges: While photocatalysis holds promise for various applications, challenges include  191919

the need for efficient catalysts, optimization of reaction condition, and addressing issues  
related to catalyst stability and reusability.  

9. Research and Development: Ongoing research aims to develop aims to develop new  
photocatalytic materials, improve the efficiency of existing catalysts, and explore novel  



applications for this technology.  

Fig No. 2 Basic Mechanism  

Water pollution due to industrialization has grown to be a continuously growing trouble,  
which is affecting human lifestyles and the aquatic ecosystem international in all factors [75]. It is  
expected that over one thousand million humans dwelling in the arid areas could have a primary  
shortage of water via 2025 [76]. It’s far, consequently, essential to treat waste water, in any other  
case they can pose both acute and persistent effect on human lifestyles and within the environment.  
Presently, there are four maximum popular strategies comprising physical adsorption, flocculation,  
chemical oxidation and photo-catalytic degradation, that have been followed to grid of natural  
contaminants from water [77-78]. The major drawback of those strategies is that they go way an  
expansion of chemical reagents and polymer electrolytes in water, which led to the era of  
unmanageable sludge and deposits. Photocatalysis then again, depends on in-situ image generated  
hydroxyl radicals (OH), superoxide radicals and positively charged (H ) which completely  +

decompose natural contaminants. For this reason, photocatalysis is an efficient, environmentally-  
friendly, low price and an easy operation for the elimination of contaminants [79]. To begin with,  
traditional porous cloth and nano based totally substances have been being used as adsorbents. The  
maximum usually used adsorbents for waste water treatment are activated carbon, zeolites, carbon  
nanotubes, mesoporous silica and chitosan beads [80]. However, they confronted technical obstacles  
including inefficiency, operational problems, excessive energy necessities, and lower financial gain.  
A perfect adsorbent ought to have high porosity and a big floor location with precise adsorbent web  
sites. Therefore, alternative photocatalytic materials have been extraordinarily suitable [81].  

Metal oxide and Metal sulphide as a photocatalyst:  

Metal oxide and metal sulphide skinny film photocatalysts can decompose an  
expansion of organic pollution into less dangerous response merchandise and the most common  
pollutant used for degradation exams are MB, RhB and MO dye. The development in thin film  
technology offers a wide commercial utility of steel oxide skinny movie photocatalysts. Even though  
TiO2 and ZnO are most studied and commercially a success material because of sure obstacles  
consisting of extensive band hole, lower efficiency, and so on, there’s scope for different metallic  
oxides and metal sulphides. The surface morphology, electronic shape, crystalline length, thickness  
and deposition method of skinny film particularly in fluences its photocatalytic performance. In case  
of steel oxide, doing of steel or non-metal not handiest reduce the band hole electricity however  
additionally decreases the recombination of electrons and holes. Similarly, the photo electrocatalysis  
phenomenon determined to be efficient to make use electron mob present at the conduction band  
after irradiation. The degradation mechanism is related to the digital shape of the photocatalyst and  
bonding among pollutant species and catalyst. The addition of small amount of surfactant can be  
one of the methods to growth the surface vicinity of thin films. Further, utilization of a spread of  
substrate and modification in electronic shape can effectively decorate photocatalytic performance  
[82].  

Here is a list of some metal oxides and metal sulphides which are commonly used as  
photocatalysts, along with their roles, efficiencies and band gap values are given in table.  
Depending upon the crystal structure, doping, and specific synthesis methods efficiency and  
band gap values are varied.  



Table No.2: List of metal oxide and metal sulphides with role, efficiency and band gap.  

Sr.  Name of Metal  Role  Efficiency  Band  
Gap  No. Oxide  

1.  

2.  

Titanium Dioxide  
(TiO2)  

Water purification, air  
Purification, and  
self-cleaning surfaces  

High efficiency in  
UV light and limited  
Efficiency in visible  
light  
Moderate efficiency  
in UV and Visible  
light  

3.0-  
3.2eV  

Zinc Oxide  
(ZnO)  

Water treatment and UV  
Filter in sunscreens  

3.3 eV  

3.  

4.  

Iron Oxide  
(Fe2O3)  
Tungsten Oxide  
(WO3)  

Water oxidation and  
Pollutant degradation  
Water splitting and  
Environmental  

Moderate efficiency  
in visible light  
Variable efficiency in  
Visible light range  

2.0-  
2.2eV  
2.4-  
2.8eV  

Remediation  

Sr.  Name of Metal  Role  Efficiency  Band  
Gap  No. Sulphide  

1

2

Cadmium sulphide  
(CdS)  
Copper sulphide  
(Cu2S)  

Hydrogen production and  
Pollutant degradation  
Solar energy conversion  
And environmental  
Applications  

High efficiency in  
Visible light range  
Variable efficiency  
In Visible light range  

2.4-  
2.5eV  
variable  

3

4

Zinc sulphide  
(ZnS)  

Hydrogen production  
And photocatalytic  
Degradation  
Hydrogen evolution  
Reactions  

Moderate efficiency  
In visible light range  

3.5-  
3.8eV  

Nickel sulphide  
(NiS)  

Variable efficiency  
In Visible light range  

Variable  

These materials are actively researched, advancements in synthesis techniques and  
modifications continue to improve their efficiency and broaden their applicability in various  
photocatalytic process, but alone metal oxide and metal sulphide has some limitations, after  
2009 maximum awareness is carried out to improve the possessions of nanomaterials such as  
chemical reactivity, optical, electrical and magnetic properties for better result [83], thus to  
increase the efficiency we need binary and ternary metal oxide as a photocatalyst.  

Binary Metal Oxide as Photocatalysis:  
Binary metal oxides, which are compounds composed of two different metal elements  

and oxygen, can offer several advantages over single metal oxides. It’s important that the specific  
benefits depend on the choice of metal elements, their ratios, and the intended application.  
Researchers often explore different combinations to discover new materials with optimized  
properties for specific technological needs.  



As a promising compound, titania (TiO2) has been widely used in the photocatalytic  3333

degradation of natural pollution of water and air. Pure TiO2 has electricity hole of 3.2eV, hence UV  
mild is necessary to excite electrons on the TiO2 floor. To spark off the photocatalyst with better  
performance and longer wavelength, some of strategies have been added [84]. One strategy is put  
together TiO2/metallic oxide nanocomposites which include SiO2/TiO2 [85], CdS/TiO2 [86],  
ZnO/TiO2 [87], SnO2/TiO2 [88]. Lifetime of photo-brought about price consists of is a prime factor  
for improving photocatalytic interest. As for ZnO-TiO2 [89], the electron transfers from the  
conduction band of ZnO to that of TiO2 below illumination, and conversely, the holes switch from  
the valence band of TiO2 to that of ZnO. Accordingly, the life of photoinduced pairs increases  
because their recombination charge decreases. So that it will expand the range of excitation energies  
of TiO2 into the visible vicinity, materials of the slender band gap, such as ZnO, had been coupled  
with TiO2 [90]. The band gap of ZnO and TiO2 is quite massive so they are not capable of absorb  
the essential part of the sun spectrum i.e. the seen location efficaciously and may simply absorb a  
small range of the UV area this is why the highest quality and powerful utilization of sun radiations  
in this subject is still considered as a assignment. Numerous attempts have been made so that the  
absorption range of TiO2 and ZnO can be extended to the visible light region, which consist of  
deposition of noble metals, doping of transition metals and coupling of various semiconductor  
systems, etc [91]. Out of a majority of these available metal oxides, ZnO has demonstrated to be an  
fantastic and promising photocatalyst, because of its first rate characteristics find it irresistible less  
expensive price, precise oxidation potential, large free excitation binding strength, flexibility in  
fabrication, and many others. Moreover, every other critical issue is the rapid recombination charge  
of photo generated electron hole pairs inside TiO2 NPs. So, plenty of tries had been made to discover  
techniques facilitating the photoactivation of TiO2 below seen-mild. TiO2 doping with numerous  
materials could be taken into consideration as an easy approach to improve its photocatalytic overall  
performance [92]. substrate and the ratio TiO2/RhB were also investigated in the photocatalytic  
degradation of RhB. There may be a hinderance that limits using ZnO as a photoelectrode due to its  
n-kind behaviour, that doesn’t permit ZnO to manipulate its electric conductivity [93]. Whilst  
transition metals like Ag, Mn, Fe, Co, Cr, Al and so forth are doped in ZnO there may be a alternate  
inside the electric, optical and magnetic residences with the changing of doping concentration [94].  
surface defects create energetic sites and this is why analysing the effect of doped ZnO on its  



photocatalytic hobby turns into vital [95]. In current years, graphene oxide is referred to as a  
promising cloth to improve the structural stability and photocatalytic pastime of TiO2 NPs [96].  
Alternatively, adheration of TiO2 NPs to head layers now not simplest prompted electrons for  
photovoltaic reactions but also prevented recombination with photo- generated holes [97]. In a  3333

single record, a simple solvothermal approach changed into used to graft TiO2 NPs on go (TiO2-  
pass as binary nanocomposite). Photograph- degradation interest of TiO2- pass nanocomposite  
became investigated on the degradation of MB and MO beneath UV-mild irradiation and in  
comparison, with pristine TiO2 NPs [98].  

Ternary Metal Oxide as a photocatalysis:  
Compared with the easy binary metal oxides, the TMOs possess a more complicated  

composition, chemical bonding among distinctive cations and oxygen atoms and bendy  
crystal structure [99]. Ternary metal oxides, which consist of three different elements, offer  
several advantages over binary metal oxides. It’s important that the advantages of ternary  
metal oxides depend on the specific elements chosen and their proportions. The selection of  
elements and their ratios plays a critical role in determining the material’s properties and  
performance in various applications.  

The complex shape gives vast benefits for TMOs as photocatalysts. First, the  
band aspects potentials for TMOs are appropriate for diverse photoinduced reactions. In addition,  
the presence of various metallic ions in the lattice of TMOs lets in for extra flexibility in designing  
and enhancing the band structure as well as other photophysical residences. Through band shape  
engineering, the capacity of sun harvesting and photon-excitation energy conversion may be  
optimized, inclusive of the fabrication of heterojunctions and the introduction of illness states [100].  
Given that water photocatalysis changed into observed with the aid of Fijishima et al. with TiO2 as  
a photocatalyst for the manufacturing of O2 and H2 from water, many kinds of semiconductors have  
been fabricated and implemented as photocatalyst, especially for the broadly studied oxide  
materials. It’s far usual that the homes of substances significantly modified in keeping with their  
synthesis process, chemical additives, morphologies, floor amendment, elements doping and the  
formation of composites and so on [101-106]. The simple binary steel oxides or metal loose  
semiconductors, consisting of TiO2, ZnO, WO3 and C3N4, and so on., had been broadly studied as  
photocatalyst to understand the essential precept. The development of photocatalytic efficiency and  



the enlargement in different potential applications [107-112]. The ternary metal oxides (AxByOz)  
with extra flexible band structures own splendid capability to be carried out as photocatalysts. An  
extensive range of ternary metal oxides (TMOs) had been fabricated, and their photocatalytic  
pastime related to morphology, electronic, optical houses should be in addition investigated. The  
one-of-a-kind constituent factors within the AxByOz composition offer more than one alternative  
to alter the materials with tunning physical and chemical residence for an enhancement of  
photocatalytic performance [113].  

Here is some ternary heterostructure metal oxide are listed with their role and band gap  
value,  

Ternary Oxide  Role  Band  
Gap  Sr.  

No.  
TiO2/SnO2/ZnO [114]  Photocatalysis-Degradation of  

Water pollutants, Water splitting  
TiO2-3.2eV  
SnO2-3.6eV  
ZnO-3.3eV  
MoS2-1.8eV  
WS2-1.6eV  

1.  

2.  

3.  

4.  

5.  

MoS2/WS2/Graphene  
[115]  

Catalysis, Electronic device  
Hydrogen Evolution reaction  
Pollutant Degradation  
Photocatalysis, Gas sensing  
Degradation of Organic pollutants,  
Hydrogen production  

Cu2O/ZnO/CuO  
[116]  

Cu2O-2.0eV  
ZnO-3.3eV  
CuO-1.2eV  
Bi2WO6-2.8ev  
BiVO4-2.4eV  
TiO2-3.2eV  
Cds-2.4eV  

Bi2wO6/BiVO4/TiO2  
[117]  

Photocatalysis- Water oxidation,  
Pollutant degradation  

CdS/ZnS/Ag2S  
[118]  

Photocatalysis- Hydrogen  
Production, Degradation of  
Pollutants, Optoelectronics  

ZnS-3.7eV  
Ag2S-1.0eV  

Fe2o3/TiO2/Graphene  
[119]  
CuIns2/CdS/ZnS [120]  

Photocatalysis, Energy storage  

Photocatalysis, Photovoltaics  

Fe2o3-2.2eV  
TiO2-3.2eV  
CuInS2-1.5eV  
CdS-2.4eV  

6.  

7.  

ZnS-3.7eV  
ZnO/SnO2/In2O3 [121]  Gas sensing, Photocatalysis  

Photocatalysis, Water Treatment  

Photocatalysis, Solar cells  

ZnO-3.3eV  8.  SnO2-3.6eV  
In2O3-3.75eV  
Bi2MoO6-1.89eV  
BiVO4-2.4eV  
WO3-2.8eV  
TiO2-3.2eV  
Fe2O3-2.2eV  
SnO2-3.6eV  
NiO-3.5eV  

Bi2MoO6/BiVO4/WO3  
[122]  9.  

TiO2/Fe2O3/SnO2  
[123]  10.  

11.  

12.  

13.  

Photocatalysis, Optoelectronics  

Photocatalysis, Energy Storage  

Photocatalysis, Gas sensing  

NiO/CdS/ZnO  
[124]  CdS-2.4eV  

ZnO-3.3eV  
CuFeO2/Fe2O3/ZnO  
[125]  

CuFeO21.15eV  
Fe2O3-2.2eV  
ZnO-3.3eV  
Cu2O-2.2eV  
ZnO-3.3eV  

Cu2O/ZnO/In2O3  
[126]  

In2O3-3.75eV  



MoS2/WS2/BN  
[127]  

Electronic devices, Catalysis  

Photocatalysis, Energy Storage  

MoS2-1.8eV  
WS2-1.6eV  
BN-2.44eV  
ZnO-3.3eV  
CdS-2.4eV  

14.  

15.  ZnO/CdS/Graphene  
[128]  

Efficiency and performance of these ternary heterostructures can be influenced by several  3535

factors, including synthesis methods, morphologies, and specific experimental conditions.  

Conclusion:  
In Conclusion, metal oxide represents key area of research for harnessing solar  

energy and mitigating environmental challenges. Binary metal oxide has been extensively  
studied, but their limitations have led to explore ternary metal oxide systems the diverse  
composition of ternary metal oxide photocatalysts have shown promising results in various  191919

applications, including water splitting, pollutant degradation, and hydrogen production. The  
understanding of underlying mechanisms, such as charge carriers, surface sates, and doping  
strategies, provides insights into optimizing the photocatalytic activity of both binary and  
ternary systems.  
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