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A B S T R A C T   

In the current research work, submicron size single-phase NaFePO4 (NFP) nanoparticles are 
successfully synthesized using the solution combustion method. The calcination of as synthesized 
NFP powder is done at 700 ◦C for 5h in the air atmosphere and it shows the maricite phase 
crystallized into an orthorhombic structure with a surface area of 9.29 m2/g.  The intermolecular 
vibrations of the (PO4)3− group are identified in the FTIR spectra. The XPS spectra of NFP con-
firms the presence of Fe and P in +2 and +5 oxidation states, respectively. The coin cell 
assembled using calcined NFP powder shows a pair of redox peaks at 2.42 and 2.69 V vs. Na/Na+

owing to Na-ion insertion and extraction. NFP material delivers a specific capacity of 28 mAh/g at 
0.1 C with 92% capacity retention after 35 cycles.   

1. Introduction 

Lithium-ion batteries (LIBs) are outstanding in terms of performance, delivering high capacity with longer cycle life and have been 
commonly used in recent portable electronic devices like cell phones, cameras, and laptops [1] besides their huge potential in electric 
vehicle and power grid applications [2]. Lithium iron phosphate (LiFePO4) is one of the gifted cathode materials in the LIBs as it 
demonstrates the remarkable theoretical capacity and cycle stability [3,4,5]. The state-of-art anode material is either metallic Li or 
graphite but both suffer from certain issues that have been successfully addressed in the newly developed anode materials such as 
transition metal oxides, vanadium based oxides, etc [6]. Despite being environmentally benign, the high cost and shortage of lithium 
resources are the major problems with large-scale energy storage applications [7]. Meanwhile, sodium-ion batteries (SIBs) have shown 
increasing interest as one of the most capable next-generation power sources owing to its comparable theoretical capacity and energy 
storage density to that of Li counterpart [8]. An enormous availability and low cost of sodium make the SIBs a better option for LIBs. 
Moreover, the rocking-chair mechanism is analogous to the same observed in the LIBs [9], which made understanding of the phe-
nomenon quite simpler. Particularly, the cathode materials performing intercalation chemistry in SIBs have relatively high voltage and 
good thermal stability. The cathode materials include layered and tunnel type transition metal oxides (NaVoO2, NaFeO2, and NaMnO2) 
[10,11,12], phosphate-based polyanions (Na3V2(PO4)2F3, Na4Fe3(PO4)2(P2O7) [13], sulphates (Na2Fe3(SO4)3) [14], pyrophosphate 
(Na2FeP2O7) [15], as well as prussian blue analogs (Na0.61Fe[Fe(CN)6]0.94) [16,17], and polymers (polyamides) [18]. Among them, 
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phosphate-based polyanions have attracted tremendous attention because of high voltage and good thermal stability [19]. Specifically, 
sodium iron phosphate (NaFePO4) having low cost and high theoretical capacity (~154 mAh/g) can be considered as a cathode 
material [20,21]. 

However, NaFePO4 exists in two phases namely maricite and olivine. The latter being thermodynamically unstable [22] is often 
obtained by replacing Li ions in LiFePO4 with Na ions, shows good electrochemical performance [23]. On the contrary, the ther-
modynamically stable maricite phase possesing relatively closed packed structures is reported to be electrochemically inactive because 
of the non-availability of Na ion diffusion paths [24]. However, few papers reported electrochemical performance of NaFePO4, 
comparatively lower than its olivine phase. The specific capacities of NaFePO4 synthesized by hydrothermal [25] and modified Pechini 
approach [26] were 20 mAh/g at 0.048 mA/g and 25 mAh/g, respectively.  Kapaev et al. [27] showed that the capacity of 
m-NaFePO4@carbon composite could be increased from 15-27 mAh/g to nearly 150 mAh/g after applying planetary ball milling. 

The present paper reports on the synthesis of NaFePO4 by solution combustion approach. It is one of the attractive and simple 
techniques to synthesize nanoparticles [28–30]. It involves a self-sustained reaction between an oxidizer and fuel promoting the easy 
synthesis of a variety of metal nanoparticles, complex oxides, alloys, and composites in the form of nanoscale powders [31]. Also, the 
paper reports on the physical properties of synthesized NaFePO4. 

2. Experimental 

The synthesis of NaFePO4 (NFP) nanoparticles as a cathode material was carried out by using solution combustion synthesis (SCS) 
method. The oxidants used were the nitrates of iron (Fe (NO3)3.9H2O: 3.04 g) and sodium (NaNO3: 3.06 g), and ammonium dihydrogen 
phosphate (NH4H2PO4: 5.3 g). The fuel was citric acid (C6H8O7) and all the chemicals used were of purchased from Alfa Aesar . The 
stoichiometric amounts of oxidants and fuel were dissolved in the minimum quantity of double distilled water. The solution was then 
allowed to stir to make a homogenous mixture and was simultaneously heated to remove excess water. The pH of the precursor so-
lution was regulated by using ammonia. The stirring and heating was continued until the gel formation and this gel was allowed to 
combust in a preheated furnace. The obtained combustion product was black-grey colored foam which was ground in an agate mortar 
to get the homogenous fine grained powder. This as synthesized powder was subjected to heat treatment in the furnace in the air 
atmosphere at 700 ◦C for 5h. 

2.1. Characterization of NaFePO4 

Thermogravimetric (TG) and differential thermal analysis (DTA) profiles of as synthesized NaFePO4 powder were obtained using 
the Perkin Elmer instrument (model SDT-2960), and measured from room temperature to 1000◦C with a variable scan rates in different 
atmospheres. The crystalline properties of as-prepared and calcined NaFePO4 powder were determined by using an X-ray diffrac-
tometer (PHILIPS PW-3710) with CuKα as a radiation source. The morphology of the particles was analyzed by scanning electron 
microscopy (JEOL JSM 6360 Japan). The chemical functional groups present in the sample were determined using Fourier transform 
infra-red (FTIR) spectroscopy, N2 adsorption-desorption isotherms were measured with the help of Quantachrome Instruments v10.0 
and the specific surface area was calculated using Brunauer-Emmett-Teller (BET) method. X-ray photoelectron spectroscopy (XPS) was 
carried out with the help of K-alpha (Thermo VG instrument with Al Kα line of 1486.6 eV) spectrometer to determine the surface 
electronic states present in the calcined NaFePO4 powder.  The obtained XPS data was calibrated using the C 1s peak of adventitious 
aliphatic carbon, and finally a Shirley-type background correction was applied. 

Fig. 1. TG-DTA of as prepared NaFePO4 powder  
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2.2. Electrode fabrication 

To fabricate the working electrode, 70% NaFePO4 powder was mixed with 20% carbon black and 10% polyvinylidene fluoride 
(PVDF) binder dissolved in N-methyl-2- pyrrolidone (NMP). The prepared slurry was coated on an aluminum foil by a doctor-blade 
method. The dried film was punched into the shape of a disc of 16 mm diameter. The coin cells were assembled with sodium metal 
foil as a reference electrode and celgard 2400 membrane as a separator.  The NaPF6 in ethylene carbonate (EC), diethyl carbonate 
(DEC) and dimethyl carbonate (DMC) in 1:1:1 ratio was used as an electrolyte. The assembling was done in the glove box filled with 
argon. The cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy (EIS) measurements 
were carried at various scan rates by using the Bio-Logic instrument (BCS-810, France). 

3. Results and discussion 

TG-DTA plot of as-prepared NaFePO4 powder in the air atmosphere is shown in Fig. 1. An initial weight loss was observed up to 150 
◦C and it was due to the removal of loosely adsorbed water. Further reduction in the weight observed up to 550 ◦C along with strong 
exothermic peaks at 440 ◦C and 488 ◦C can be assigned to the oxidation of remaining nitrates, the formation of secondary Na based 
phases, or transformation of NaFePO4 from olivine to maricite phase [32]. The weight loss is not observed above 600 ◦C, which affirms 
no further structural or phase change in the material. Hence the calcination temperature of NaFePO4 powder was fixed as 700 ◦C. 

The XRD pattern of as-prepared NFP powder is as shown in Fig. 2 (a). The as-prepared powder was confirmed as highly amorphous, 
as no peaks in the XRD pattern are observed. To enhance the crystallinity of the material, the prepared powder was calcined at 700 ◦C 
for 5h in the air atmosphere, and its XRD pattern is presented in the Fig. 2 (b). Surprisingly, the powder is crystallized into NaFePO4 
without the formation of any intermediate/secondary phases, unlike earlier studies where heat treatment in the air atmosphere had led 

Fig. 2. XRD patterns of (a) as prepared powder, and (b) powder calcined at 700 ◦C for 5 h  

Fig. 3. SEM image of NFP powder calcined at 700 ◦C  
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to the formation of secondary phases [28]. The reducing atmosphere created by the fuel (citric acid) during combustion prevented the 
formation of the intermediate/secondary phases. The observed XRD pattern is compared with the standard data for the maricite phase 
(JCPDS:29-1216) [33]. The structure of the material is orthorhombic with lattice constants a = 7.0 Å, b = 8.92 Å, and c = 5.02 Å. The 
Debye Scherrer equation mentioned in equation (1) was used to determine the crystallite size. 

D =
Kλ

βcosθ
(1)  

The average crystallite size is 32 nm. 
Fig. 3 shows an SEM image of NFP powder calcined at 700 ◦C. This shows nearly round-shaped grains. The edges of some of the 

grains have fine cuts at the boundaries. The average size of the grains is 1.45 μm. 
The FTIR spectrum of NaFePO4 powder is provided in the Fig. 4. The intermolecular vibrations of the PO4 group are observed in the 

FTIR spectrum. The bands observed in the wavenumber region 900 to 1150 cm− 1 are due to symmetric (ν1) and asymmetric (ν3) 
stretching modes whereas bands in the region 500 to 650 cm− 1 are due to the symmetric (ν2) and asymmetric (ν4) bending modes [34]. 
Specifically, FTIR spectrum reveals well defined characteristic stretching and bending vibrations of the phosphate anion (PO4)3− . The 
stretching modes are observed at 974.5 cm− 1 (ν1) and 1023 cm− 1 (ν3), while the bending modes are observed at 566.3 cm− 1 (ν4) and 
627.6 cm− 1 (ν2) [20,35]. Moreover, the weak bands at 1182 and 1590 cm− 1 are ascribed to the stretching vibrations of C-O bond and 
another weak band at 2304 cm− 1 is assigned to C-H stretching vibration. This carbon content originates from the consumption of citric 
acid used as fuel for the synthesis of NFP [36]. 

Fig. 4. FTIR spectrum of NFP powder calcined at 700 ◦C  

Fig. 5. The nitrogen adsorption/desorption isotherms of NFP powder. The inset shows pore size distribution  

S.N. Yadav et al.                                                                                                                                                                                                       



Chinese Journal of Physics 69 (2021) 134–142

138

The N2 adsorption-desorption isotherms and pore size distribution of calcined NFP powder are shown in Fig. 5. Brunauer-Emmett- 
Teller (BET) method was used to estimate surface area. The calculated surface area is 9.29 m2/g, which is quite high to improve the 
electronic conductivity while average pore radius is 5.37 nm (the inset of Fig 5), representing a mesoporous structure favorable for 
diffusion enabled processes during intercalation and deintercalation. 

XPS spectrum was recorded for NFP powder calcined in air at 700 ◦C.  The wide scan spectra for Na 1s, Fe 2p, P 2p, O 1s and C 1s are 

Fig. 6. XPS spectrum of NFP powder calcined at 700 ◦C  
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presented in Fig. 6. The Na 1s peak is observed at binding energy 1071.07 eV. As shown in the Fig 6, the Fe 2p spectrum splits into two 
levels due to spin-orbit coupling. These Fe 2p3/2 and Fe 2p1/2 levels are observed at binding energies 711.67 and 724.85 eV, 
respectively. In addition, it shows satellite peak at 717.62 eV corresponding to Fe 2p3/2 and originated due to partially filled d-orbitals 
of Fe. The binding energy difference (spin-orbit splitting) between Fe 2p3/2 and Fe 2p1/2 levels is 13.18 eV. This identifies Fe in +2 
state. The P in phosphate anion ((PO4)3− ) is in +5 state with binding energy 132.88 eV.  The O 1s spectrum shows two peaks at 530.75 
and 534.54 eV, the former intense one is due to O2− in the crystal lattice while the later can be assigned to adsorbed oxygen species and 
oxygen-containing groups attached to the carbon. The C1s peak at binding energy of 284.46 eV indicates the presence of graphitic 
carbon in addition to C=O contribution at 287.9 eV. 

Fig. 7. Cyclic voltammetry of NFP electrode at a scan rate of 0.1mV/s  

Fig. 8. Charge-discharge profile of NFP electrode at 0.1 C  

Table 1 
Comparison of specific capacities of NaFePO4 with the values reported in the literature  

Sr. No. Structure Method Specific Capacity (mAhg¡1) Surface area (m2/g) C-rate Reference 

1. M-NaFePO4 Solution combustion synthesis 28 9.29 0.1 Present work 
2. Maricite-NaFePO4 Solid state route 20 5.3 0.1 25 
3. Maricite NaFePO4/C Two-step solid-state route 48.8 - 0.05 33 
4. Maricite -NaFePO4 Pechini process 25 - 0.1 26 
5. M-NaFePO4@ carbon Modified Pechini process 27 - 0.1 27  
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4. Electrochemical measurements 

The cyclic voltammetry (CV) curve of NFP electrode in the voltage range 1.5 to 3.5 V at a scan rate of 0.1mV/s is shown in Fig. 7. 
The cathodic and anodic peaks are observed at 2.42 and 2.69 V (vs. Na/Na+), respectively representing redox process due to the two- 
step Na-ion insertion and extraction mechanism. Besides, a few more peaks due to the presence of electroactive impurities are observed 
but no impurities are evident in the XRD pattern. The CV curve also shows some capacitive contribution. 

The charge-discharge profile of NFP electrode at 0.1 C is shown in Fig. 8. The NFP delivers a specific capacity of 28 mAh/g at 0.1 C. 
Such a small specific capacity has also been reported by Ling Zhao et al [33] and others as tabulated in the Table 1. It has been reported 
that the specific capacity of material could be improved by increasing defect concentration or by decreasing the particle size [27]. 

The cyclic stability of NFP electrode at 0.1 C is shown in Fig. 9. The capacity retention is observed to be 92% after 35 cycles.  The 
electrochemical impedance spectroscopy (EIS) of NFP is provided in Fig. 10. It comprises a depressed semicircle at a higher frequency 
and a tail at a lower frequency. The data were fitted using BT-Lab V1.64 (Biologic-810) software and electrochemical processes taking 
place can be represented by equivalent circuit R1 + Q2/ (R2 + W2) (inset of Fig. 10), where R1, R2, and W2 respectively represents 
ohmic, charge transfer, and Warburg resistance and Q2 represents capacitance. The fitted values are R1=41.57 Ω, R2=2814 Ω, and 
Q2=3.974 × 10− 6 F. Further the slope of the straight line indicates low Na ion diffusion during the electrochemical reaction [37]. EIS 
reveals that the high value of charge transfer resistance of the cell is restricting the discharge capacity of NFP. 

5. Conclusions 

In summary, the maricite-NaFePO4 has been successfully synthesized using low-cost, environmentally friendly, and potentially 

Fig. 9. Cycling stability of NFP electrode at 0.1 C.  

Fig. 10. Electrochemical impedance spectroscopy (EIS) of NFP  
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scalable solution combustion method. The crystallite size of the prepared powder is 32 nm. A well defined characteristic stretching and 
bending vibrations of (PO4)3− are observed in the  region 900 to 1150 cm− 1 and 500 to 650 cm− 1, respectively. The binding energy 
difference between Fe 2p3/2 and Fe 2p1/2 levels is 13.18 eV validating the presence of bivalence Fe. Although the majority of the 
research reports claimed that the maricite phase is electrochemically inactive, we are among the few reporting specific capacity of 28 
mAh/g at 0.1C and it is assigned to the presence of mesoporous particles. Further work is in progress to comprehend the underlying 
charge transfer mechanism to minimize the charge transfer resistance and enhance the specific capacity. 
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